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Abstract—With the rapid proliferation of mobile devices, the
marriage of millimeter-wave (mmWave) and MIMO technologies
is a natural trend to meet the communication demand of
data-hungry applications. Following this trend, mmWave multi-
user MIMO (MU-MIMO) has been standardized by the IEEE
802.11ay for its downlink to achieve multi-Gbps data rate. Yet,
its uplink counterpart has not been well studied, and its way
to wireless local area networks (WLANs) remains unclear. In
this paper, we present a practical uplink MU-MIMO mmWave
communication (UMMC) scheme for WLANs. UMMC has two
key components: i) an efficient Bayesian optimization (BayOpt)
framework for joint beam search over multiple directional
antennas, and ii) a new MU-MIMO detector that can decode
asynchronous data packets from multiple user devices. We have
built a prototype of UMMC on a mmWave testbed and evaluated
its performance through a blend of over-the-air experiments
and extensive simulations. Experimental and simulation results
confirm the efficiency of UMMC in practical network settings.

Index Terms—mmWave, MU-MIMO, 6G, Bayesian learning

I. INTRODUCTION

Recently, the marriage of millimeter-wave (mmWave) and
multi-user multiple-input-and-multiple-output (MU-MIMO)
technologies has attracted much research and development
attention in wireless local area networks (WLANs) as it has
potential to offer 100s Gbps data rate via simultaneous trans-
mission of multiple independent data streams [1]. As a con-
crete step towards its real-life applications, downlink mmWave
MU-MIMO has been standardized by IEEE 802.11ay [2], and
its theoretical data rate can reach 176 Gbps.

However, the advancement of mmWave MU-MIMO is
mainly limited to its downlink. Very limited progress has
been made so far for its uplink. While both 802.11ac (sub-
6GHz) and 802.11ay (60GHz) support downlink MU-MIMO,
neither of them supports uplink MU-MIMO. This stagnation
underscores the grand challenges in the design of practi-
cal yet efficient uplink mmWave MU-MIMO communication
schemes. In addition, the demand of uplink data rate is dramat-
ically increasing in emerging applications such as autonomous
driving and video streaming. Ericsson predicts that the amount
of global uplink traffic will reach 70 EB per month in 2027
[3]. Therefore, there is a critical need to fill this gap.

In this paper, we present a practical yet efficient uplink
MU-MIMO mmWave communication scheme (UMMC) for
a wireless local area network (WLAN). UMMC allows mul-
tiple stations to simultaneously send their data packets to
an access point (AP) while not requiring fine-grained inter-
station synchronization. We address two challenges in the
design of UMMC. The first challenge lies in the analog
beamforming for a multi-antenna AP. While the literature has

a wealth of analog beamforming work, existing approaches
can be generally classified into two categories: model-based
optimization (e.g., [4], [5, Table V]) and model-free beam
search (e.g., [6], [7], [8], [9], [10]). While model-based ap-
proaches offer the optimal antenna weight vectors (AWVs)
for analog beamforming, they require accurate antenna models
and channel knowledge, which are hard to obtain. Therefore,
these approaches are not amenable to practical use. Model-free
approaches do not require the above knowledge as they aim to
find the best beam in a predefined beambook. However, most
of them focus on maximizing the signal strength for a single-
antenna mmWave device while minimizing their beam search
overhead. While maximizing signal strength is equivalent to
maximizing data rate in single-antenna systems, it is not the
case in MU-MIMO systems. This is because the capacity of
an MU-MIMO channel is dependent upon not just the signal
strength but also the correlation of MIMO channels. When
two stations have highly-correlated channels, the AP may not
be capable of decoding their packets even if the signals are
strong.

To address this challenge, we design a Bayesian optimiza-
tion (BayOpt) framework for joint beam search at the AP. This
framework is inspired by two facts: i) the relation between
a selected beam and its achievable data rate in MU-MIMO
communications is complex and unknown in real systems; and
ii) BayOpt has been proved to be an effective technique for
finding an optimal or near-optimal solution to an optimization
problem whose objective function and constraints are unknown
and costly to evaluate. The key idea of the BayOpt framework
is to guide beam search using the posterior probability derived
from those beams that have already been evaluated. The more
beams we evaluate, the more accurate information we have for
the remaining beams. Compared to exhaustive search, BayOpt
appears to be surprisingly efficient in finding a near-optimal
beam within a given airtime budget.

Another challenge in the design of UMMC is the syn-
chronization among stations. Actually, the signal detection in
uplink MU-MIMO transmission has been well studied in sub-
6GHz wireless networks, and some signal detection methods
such as zero-forcing (ZF) and minimum mean square error
(MMSE) have been widely used in practice. However, existing
signal detectors are based on an important assumption — the
data packets from different stations are synchronized in time
when impinging on the AP. Particularly, in OFDM systems, the
time misalignment of the packets when arriving at the AP must
be less than the time duration of an OFDM symbol’s cyclic
prefix (CP). While this requirement can be achieved in narrow-



band (20 MHz) sub-6GHz systems (e.g., using timing advance
protocols), it is extremely challenging to achieve in ultra
wideband mmWave systems. For instance, using conventional
MU-MIMO detectors, the time misalignment of packets in
802.11ay must be less than 36ns, which is hard to maintain in
practice. Due to this stringent requirement, uplink MU-MIMO
has not yet been supported by 802.11ay standard [2].

To address this challenge, we argue that it is more desirable
living with the packet misalignment at the AP instead of em-
ploying an onerous protocol to synchronize stations. Towards
this goal, we observed that existing MU-MIMO detectors
work in the spatial domain while the packet misalignment
is an imperfection in the temporal domain. Since these two
domains are orthogonal, spatial MU-MIMO detectors should
be immune to temporal misalignment of data packets. In fact,
the real problem is that the construction of existing MU-
MIMO detectors requires the knowledge of channel, which
relies on orthogonal pilots (reference signals) in data packets
to estimate. However, misaligned packets cannot maintain
the orthogonality of their pilots, making it hard to estimate
channels. To solve this problem, we design an asynchronous
MU-MIMO detector through a transformation of existing
MMSE MU-MIMO detector. This new detector is capable of
decoding asynchronous packets from multiple stations without
the need of explicit channel knowledge. The key idea behind
our design is to use the interfered pilots within each packet
to train its detection filter. Doing so eliminates the need of
channel matrix in the construction of the detection filter while
achieving a surprisingly good performance. The new detector
fundamentally relaxes the synchronization requirement for
stations in uplink MU-MIMO transmission, making UMMC
amenable to practical implementation.

We have evaluated UMMC through a blend of over-the-
air experiments and extensive simulations. We implemented
UMMC on a two-user MIMO mmWave (60GHz) testbed and
demonstrated that it enables real-time uplink packet transmis-
sion in the absence of inter-user synchronization. Experimental
results show that, compared to exhaustive beam search, Bay-
Opt achieves 92% throughput while reducing the overhead by
98%. In addition, simulation results from a 100-user mmWave
network show that, compared to exhaustive beam search,
BayOpt achieves more than 80% of its throughput while
entailing less than 5% of its overhead in all two-user, three-
user, and four-user MIMO cases.

The contributions of this paper are summarized as follows.
• We design a practical uplink MU-MIMO mmWave com-

munication scheme for WLANs. We demonstrate that it
works in realistic scenarios via over-the-air experiments.

• We introduce the first-of-its-kind BayOpt framework for
beam search in mmWave MU-MIMO systems, and show
its efficiency through both simulation and experiments.

• We propose a new MU-MIMO detector that can decode
the asynchronous data packets from multiple user devices.
For the first time, it demonstrates via theory and exper-
iments that fine-grained inter-user synchronization is not
needed for uplink MU-MIMO mmWave transmission.

II. PROBLEM DESCRIPTION

We consider the uplink MU-MIMO communication in a
WLAN as shown in Fig. 1, where an AP wishes to decode con-
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Fig. 1: Uplink MU-MIMO transmission in WLAN.

current data packets from multiple stations. Our objective is to
maximize the uplink throughput through the design of analog
and digital beamforming for the AP. In the pursuit of this
objective, we assume that a beam has already been selected
for each station using an existing beam search scheme such as
sector-level sweep (SLS) and beam refinement protocol (BRP)
[11]. We focus on the analog and digital beamforming at the
AP for uplink MU-MIMO transmission.

A. Problem Formulation

Analog Beamforming. Denote M as the number of phased-
array antennas (RF chains) on the AP and N as the number
of stations involved in the uplink MU-MIMO transmission
(assuming N ≤ M ). We assume that all the phased-array
antennas on the AP are identical. Suppose that a linear phased-
array antenna intends to steer its beam energy to the direction
of θ. Then, its antenna weight vector (AWV) can be modeled
as: Gap(θ) = [ej

dap
λ i sin(θ)]0≤i≤Nap−1, where dap is the patch

element spacing, λ is the wavelength, and Nap is the number
of patch elements. Similarly, for the phased-array antenna
on a station, suppose it intends to steer its beam energy
to the direction of ϕ. Then, its AWV can be modeled as:
Gsta(ϕ) = [ej

dsta
λ i sin(ϕ)]0≤i≤Nsta−1, where dsta is the patch

element spacing and Nsta is the number of patch elements.
Then, the signal received by the AP’s mth RF chain can be
written as:

ym =

N∑
n=1

Gap(θm) H̃mn Gsta(ϕn)
⊤xn + wm, (1)

where xn is the signal transmitted by the nth station, wm is the
received noise, H̃mn ∈ CNap×Nsta is the over-the-air channel
between the AP’s mth antenna and the nth station’s antenna.

Digital Beamforming. At the AP (receiver), digital beam-
forming serves for the purpose of MU-MIMO Detection.
Denote y⃗ = [y1, y2, · · · , yM ]⊤ as the received signals and p⃗n
as the AP’s spatial filter for decoding the data packets from
station n. Then, the decoded version of the signal from station
n can be written as: x̂n = p⃗H

n y⃗, for 1 ≤ n ≤ N , where (·)H
is the conjugate transpose operator.

Design Objective. At the AP, denote θ⃗ = [θ1, θ2, · · · , θM ]
as the beam angle vector, which can be directly used to
calculate the AWV for analog beamforming. Denote p⃗ =
[p⃗1, p⃗2, · · · , p⃗N ] as the detection vector. Denote EVMn as
the error vector magnitude (EVM) of the decoded signals
from station n, i.e., EVMn ≡ E[|xn−x̂n|2]

E[|xn|2] . Without loss of



generality, we assume that the transmit power at stations are
normalized, i.e., E[|xn|2] = 1. Then, we have

EVMn = E[|xn − x̂n|2]. (2)

The link capacity (spectral efficiency) between station n and
the AP can be written as: cn = log2(1 +

1
EVMn

).
In uplink MU-MIMO, it is important not only to maximize

the data rate but also ensure the fairness among users. Thus,
our objective is to pursue the best analog and digital beams
so that the bottleneck link data rate can be maximized.
Mathematically, it can be formulated as:

[θ⃗∗, p⃗ ∗] = argmax
θ⃗∈B, p⃗

(
min
n

log2(1 +
1

EVMn
)

)
, (3)

where B is the predefined beambook that includes all possible
beam angle vectors.

The optimization problem in (3) can be divided into two
subproblems: i) analog beam selection (determining θ⃗), and
ii) MU-MIMO detector construction (determining p⃗ ). These
two subproblems are tightly coupled with each other. Given
the complex nature of this problem, it is intractable to pursue a
global optimal solution in real systems. Therefore, we develop
a practical yet efficient scheme to solve the two subproblems.

B. Key Challenges
Inaccurate Models. Solving the above optimization is

nontrivial as the gradients of the objective function are un-
known, so first-order methods like gradient descent cannot
be applied. In addition, we used Gap(θ) and Gsta(ϕ) to
model the response of ideal linear phased-array antennas. In
practice, phased-array antennas have many imperfections in
their radiation patterns. Their actual mathematical models are
unknown. The discrepancy between the ideal and real antenna
model significantly affects the beamforming design.

Channel Correlation. The capacity of MU-MIMO trans-
mission is determined by not only signal strength but also
MIMO channel correlation. Existing approaches based on
signal strength only are not suitable for beam search in MU-
MIMO. Therefore, it calls for a beam search scheme that
can jointly identify the best beams for all antennas. One
straightforward approach is exhaustive search. However, it
will entail a large airtime overhead and thus compromise the
throughput gain of MU-MIMO. Therefore, an efficient joint
beam search scheme is needed.

Inter-Station Timing Synchronization. Uplink MU-
MIMO detection has been well studied. However, existing
schemes require fine-grained inter-user timing synchronization
for signal detection. That is, the time misalignment of data
packets from different stations must be less than OFDM CP
length. In 802.11ay [2], the normal guard interval duration
(CP) is 36.36ns. Maintaining the inter-user synchronization
within 36.36ns not only entails a large overhead but also
complicates the network design and operation. For this reason,
neither 802.11ac (sub-6GHz) nor 802.11ay (60GHz mmWave)
supports uplink MU-MIMO.

III. OVERVIEW OF UMMC
In this section, we first highlight our approaches to over-

coming the above challenges and then present the overall
system diagram of UMMC. In what follows, we denote

Analog beamforming:
Configure the weights 
for AP’s M antennas

Digital beamforming:
Asynchronous 

MU-MIMO detection

iteration 1: θ1, f(θ1) 

iteration 2: θ2, f(θ2) 

iteration 3: θ3, f(θ3) 

iteration t-1: θt-1, f(θt-1) 

...

Bayesian optimization for 
beam search control 

θt = [θ1, θ2, …, θM]

Evaluated beams
Perform 

next beam 
evaluation

p = [p1, p2, …,pN]

Evaluation:
Set analog beam to θt and 
digital beamformer to p, 
measure the objective 

function f(θt) 

Add the 
evaluation 
result to 

the dataset

42 3

1

Compute the best 
beam for next 
evaluation: θt

Fig. 2: The high-level system diagram of UMMC.

f(θ⃗) = maxn{EVMn}. When p⃗ is given, the optimization
in (3) is equivalent to minimizing f(θ⃗).

A. Our Approaches
Analog Beam Search. To address the beam search chal-

lenge, we design a BayOpt scheme for joint beam search.
BayOpt has been proved to be an effective technique for
solving sequential optimization problems where the objective
function is complex (treated as a black-box), the (sub-)gradient
is unknown, and the evaluation is expensive [12]. To illustrate
the idea behind BayOpt, let us consider the beams in a
beambook [θ⃗1, θ⃗2, · · · , θ⃗3600]. Suppose that we have measured
two beams, say θ⃗10 and θ⃗1000, and found that f(θ⃗10) = 5 and
f(θ⃗1000) = 0.1. Then, in the next iteration we should select
a beam in the neighborhood of θ⃗1000 to evaluate, because the
global minimum is more likely sitting in the neighborhood of
θ⃗1000 compared to θ⃗10. BayOpt is a principled strategy to guide
the process of joint beam search based on posterior probability.

MU-MIMO Detection. Inter-station synchronization is a
fundamental problem for uplink MU-MIMO. Achieving the
required timing alignment for packet transmission among
distributed stations is extremely hard. In light of this, we live
with the timing misalignment among the stations and focus
on enabling asynchronous MU-MIMO detection. To this end,
we revisit the conventional (synchronous) MMSE detector and
find that a transformation can make it applicable to decoding
asynchronous data packets from independent stations.

B. System Diagram
Fig. 2 shows the system diagram of UMMC. The AP

measures the performance of a sequence of analog beams
[θ⃗1, θ⃗2, · · · , θ⃗t, · · · , θ⃗T ], where t is the evaluation/iteration
index and T is the predefined maximum number of evalu-
ations/iterations allowed (e.g., T = 30). In the end of T
iterations, UMMC chooses the beam that yields the best
performance. In each iteration t, the operations of UMMC
include the following four steps:

• Step 1 : The AP selects a beam θ⃗t for evaluation in the
current iteration based on the posterior probability derived
from the past evaluations, i.e., (θ⃗t′ , f(θ⃗t′)) for 1 ≤ t′ < t.
Details are presented in Section IV.

• Step 2 : The AP reconfigures its phased-array antennas
by setting their beam patterns to θ⃗t.



• Step 3 : The AP first calculates its digital beamformers
(a.k.a. MU-MIMO detector) p⃗ = [p⃗1, p⃗2, · · · , p⃗N ], and
then uses them to decode asynchronous signal frames
from the N stations. Details are presented in Section V.

• Step 4 : The AP measures the EVM of the decoded
signals from each station. By doing so, it obtains f(θ⃗t).
Then, (θ⃗t, f(θ⃗t)) is added to the dataset and will be used
to guide the future beam search.

IV. BAYESIAN OPTIMIZATION FOR BEAM SEARCH

In this section, we assume that the algorithm for determining
p⃗ is given and focus on the BayOpt design to find a near-
optimal beam θ⃗ for the AP. The design of p⃗ will be presented
in the next section.

A. Why Bayesian Optimization?

Recall that the objective function is f(θ⃗) = maxn{EVMn}.
It has the following salient features.

• f(θ⃗) has a complex structure: Fig. 3 shows an example
of f(θ⃗) obtained through exhaustive beam search on our
two-user MIMO 60GHz mmWave testbed1. It is evident
that f(θ⃗) is hard to optimize due to its non-convexity.

• f(θ⃗) is unknown: Practical mmWave communication sys-
tems typically suffer from hardware imperfections such
as phase noise and clock jitters [13], which are hard
to characterize and model. As such, the beam pattern
may largely deviate from its ideal model Gap(θ). The
accurate objective function f(θ⃗) is unknown and can only
be obtained via exhaustive experimental measurements.

• Evaluating f(θ⃗) is costly: To evaluate f(θ⃗) for a given
θ⃗, the AP needs to physically set up the beam pattern
and measure the resultant signal quality. This process
incurs a fixed airtime overhead. For example, in 802.11ay,
measuring the value of f(θ⃗) for a given θ⃗ may take the
time of one Control PHY Preamble (about 3.7µs), let
alone other airtime overhead incurred in this process.
Therefore, there is a tradeoff between the quality of θ⃗
and the number of evaluations of f(θ⃗).

Fortunately, BayOpt is an effective technique to optimize
such a function that is unknown yet expensive to evaluate
[12]. It makes use of the laws of probability to combine prior
belief with observed data to compute posterior distribution of
the objective function. Therefore, we will design a BayOpt
framework for analog beam search.

B. A Bayesian Optimization Framework
To perform BayOpt, one needs to address two problems:

i) finding a statistical process to model the function being
optimized, and ii) selecting an acquisition function as a
surrogate approximation to guide the search in each iteration.
In what follows, we address these two problems in order.

Gaussian Process Regression. We model the iterative beam
search problem as a Gaussian process. In the tth iteration,
the AP has observed t − 1 beams. Denote Θ = {θ⃗i}t−1

i=1 as
the set of beams that the AP has already observed. Denote
f(Θ) = {f(θ⃗i)}t−1

i=1 as the objective function values of those
observed beams. We treat f(Θ) as a multi-variate Gaussian

1The detailed experimental setup is presented in Section VI-A.

Optimal Point

Fig. 3: An instance of f(θ⃗) obtained from experimental
measurements on a two-user MIMO 60GHz testbed, where
θ⃗ = [θ1, θ2] and f(θ⃗) = max(EVM1,EVM2) in dB.

distribution, with µ(Θ) as its mean and k(Θ,Θ) as its
covariance kernel. Here, µ(Θ) is a (t−1) × 1 vector, while
k(Θ,Θ) is a (t−1)×(t−1) matrix. Let θ⃗ be an arbitrary beam
in the beambook. Then, per the definition of Gaussian process,
the joint distribution of the function values corresponding to
θ⃗ and Θ should satisfy:[

f(Θ)

f(θ⃗)

]
∼ N

( µ(Θ)

µ(θ⃗)

,

k(Θ,Θ) k(Θ, θ⃗)

k(θ⃗,Θ) k(θ⃗, θ⃗)

) , (4)

where µ(·) and k(·, ·) should be understood as an element-wise
operational function. There are various definitions for Gaus-
sian kernel, such as Matérn kernel, exponentiated quadratic
kernel, and radial basis function kernel [14]. In our exper-
iments, we choose radial basis function kernel, k(θ⃗i, θ⃗j) =

exp(− 1
2σ2 ||θ⃗i − θ⃗j ||2), where σ is a hyper-parameter that

governs the kernel width. In our experiments, we let σ = 1.
The posterior distribution on the arbitrary beam θ⃗ can be

calculated through standard Bayesian rules. Specifically, the
distribution of f(θ⃗) can be modeled as:

f(θ⃗) ∼ p
(
f(θ⃗)|θ⃗,Θ, f(Θ)

)
= N

(
µ(θ⃗),Σ(θ⃗)

)
, (5)

where

µ(θ⃗) = k(θ⃗,Θ)k(Θ,Θ)−1f(Θ), (6)

Σ(θ⃗) = k(θ⃗, θ⃗)− k(θ⃗,Θ)k(Θ,Θ)−1k(Θ, θ⃗). (7)

Acquisition Function. There are different acquisition func-
tions available for BayOpt problems such as Probability of
Improvement (PoI), Expected Improvement (EI), and Gaussian
process Upper Confidence Bound (GP-UCB) [14]. We choose
EI for two reasons: i) compared to PoI, it has been shown to
be better-behaved; and ii) unlike GP-UCB, it does not involve
tuning parameters [15]. The acquisition function can be written
as:

EI(θ⃗) = E
[
max(f(θ⃗)− f(θ⃗+), 0)

]
, (8)

where θ⃗+ is the best beam found so far. Under the Gaussian
process model, it can be analytically written as follows:

EI(θ⃗) =
(
µ(θ⃗)− f(θ⃗+)− ξ

)
CDF(Z) + Σ(θ⃗) pdf(Z), (9)

where Z = µ(θ⃗)−f(θ⃗+)−ξ

Σ(θ⃗)
, CDF(·) and pdf(·) are the cu-



mulative distribution function and the probability density
function of standard normal distribution, respectively, and ξ
is a parameter that determines the amount of exploration
during the optimization. A large value of ξ leads to more
exploration, while a small value leads to more exploitation.
In our experiments, we empirically set ξ to 0.1.

Beam Selection. In the tth iteration, the beam selected for
evaluation is obtained by solving the following problem:

θ⃗t = argmax
θ⃗∈B\Θ

EI(θ⃗), (10)

where B is the set of all predefined beams and Θ is the set
of beams that has been evaluated so far. We note that (10) is
easy to solve because (9) is a simple, disciplined function.

C. Practical Considerations

There are two challenges associated with the above BayOpt
framework when it is applied to beam search. In the following,
we first point out the challenges and then present our solutions.

Limited number of evaluations. MmWave systems have
a fixed airtime budget for beam search/training, which de-
termines the maximum number of evaluations/iterations that
can be performed before data transmission. In practice, given
the limited airtime budget for beam search, it is unlikely to
find the optimal beam for data transmission. Therefore, the
beam search problem is further constrained by the number of
evaluations. To address this challenge, we propose a recenter-
and-shrink (RaS) scheme for the Gaussian process regression.
This scheme was inspired by [16]. The basic idea is that, when
approaching the evaluation budget, we recenter the search
space to the current optimal beam and shrink the search space.
Doing so increases the probability of finding a better beam
when we reach the evaluation budget. Following this idea, we
modify the acquisition function in (10) to:

θ⃗t = argmax
θ⃗∈B\Θ

EI(θ⃗) (11)

s.t. θm ∈

{
[−π

2 ,
π
2 ] if 1 ≤ t < T/2

[θ+m − ϕt

2 , θ+m + ϕt

2 ] if T/2 ≤ t ≤ T.

where t is the iteration/evaluation index, T is the maximum
number of evaluations, θ⃗+ = [θ+m]Mm=1 is the best beam found
so far, and ϕt is the reduced search range. Empirically, we set
ϕt = ( 32 − t

T )π in our experiments.
Cubic Computational Complexity. The computational

complexity of Gaussian process regression is cubic to the
number of data samples, i.e., O(t3), where t is the number of
evaluations that have been performed [14]. Clearly, the com-
putation rapidly increases as the evaluation procedure evolves.
To overcome the computation challenge of Gaussian process, a
wealth of sparse approximations have been recently suggested,
such as the subset of data (SoD) approximation, the subset
of regressors (SoR) approximation, the deterministic training
conditional (DTC) approximation, and partially independent
training conditional (PITC) approximation [17]. In these meth-
ods, a subset of the latent variables are treated exactly while
the remaining variables are treated approximately to reduce
the computation. Here, we employ the SoR approximation for
the beam search as it demonstrates a good tradeoff between
performance and computation (see Tables 8.1 & 8.2 in [17]).

Algorithm 1 Bayesian optimization for analog beam search

1: Required: T : the budgeted number of evaluations.
2: Output: A beam θ⃗∗ in the predefined beambook B for

data packet reception at the AP
3: Initialization Θ = [⃗0].
4: for t = 1, 2, · · · , T do
5: Calculate Φ using (14)
6: Calculate µ(θ⃗) using (12) and Σ(θ⃗) using (13)
7: Construct the surrogate function EI(θ⃗) using (9)
8: Find the next beam direction θ⃗t by solving (11)
9: Add θ⃗t to Θ

10: end for
11: return θ⃗∗ = argminθ⃗∈Θ f(θ⃗).

Denote Φ as the subset of training data samples that
are selected for exact regression, where Φ ⊂ Θ. Per [17],
the Gaussian process regression can be characterized by the
approximate mean and covariance as follows:

µ(θ⃗) = σ−2k(θ⃗,Φ)Q−1k(Φ,Θ)f(Θ), (12)

Σ(θ⃗) = k(θ⃗,Φ)Q−1k(Φ, θ⃗), (13)

where Q = σ−2k(Φ,Θ)k(Θ,Φ) + k(Φ,Φ).
A question to ask is how to select the active data samples

for Φ. Empirically, we define an integer number τ ∈ Z which
is smaller than t. We choose the τ beams in Θ that are closest
to θ⃗+ as the active samples for Φ. Denote g(θ⃗) ≜ ||θ⃗+ − θ⃗||2
as the metric for θ⃗. Based on this metric, we sort the elements
in Θ in a non-decreasing order and denote the resulting vector
as Θsrt = [θ⃗s1 , θ⃗s2 , · · · , θ⃗st ]. Then, we let:

Φ = [θ⃗s1 , θ⃗s2 , · · · , θ⃗sτ ]. (14)

With the approximation in (12)-(14), the computational
complexity of Gaussian process regression in the tth iteration
decreases to O(τ2t) [14]. More importantly, the complexity
scales linearly (rather than cubically) with the number of
iterations.

We present the proposed BayOpt algorithm in Alg. 1. In a
nutshell, it is a non-parametric online learning algorithm that
guides the beam search using the posterior probability of those
data samples that have been evaluated so far.

V. ASYNCHRONOUS MU-MIMO DETECTION

In this section, we first review the MMSE MU-MIMO
detector, and then present a transformation for MMSE MU-
MIMO detector so that it can decode asynchronous data
packets. The resulting detector fundamentally relaxes the
inter-user synchronization for uplink MU-MIMO, and thus
is particularly suited for mmWave communications. Finally,
we conduct performance analysis of the proposed detector in
mmWave networks.

A. Conventional (Synchronous) MMSE MU-MIMO Detector

Consider the uplink MU-MIMO transmission from N sta-
tions to an M -antenna AP as shown in Fig. 1. Suppose that
data packets from the N stations are perfectly aligned in time
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Fig. 4: An illustration of the received asynchronous packets
from multiple stations at the AP in an 802.11ay WLAN.

when impinging on the AP. Then, the signal transfer model in
the digital domain can be written as:

y⃗ = Hx⃗+ w⃗, (15)

where y⃗ ∈ CM×1 is the received digital baseband signal vector
at the AP, x⃗ = [x1, x2, · · · , xN ]⊤ is the transmit signal vector,
where xn is the signal at the nth station, w⃗ ∈ CM×1 is the
noise vector, and H = [Hmn]1≤m≤M,1≤n≤N ∈ CM×N is the
compound channel between the N stations and the AP.

To decode the N data packets, the AP can first estimate the
compound channel using the orthogonal pilots (a.k.a. reference
signals) in the N data packets and then construct the MMSE
MIMO detector as follows:

P = HH(HHH +
σ2
w

σ2
x

I)−1, (16)

where I is an identity matrix of proper dimension, σ2
x is signal

power, and σ2
w is noise power. After constructing the MMSE

detector, the AP can perform MU-MIMO detection as follows:
ˆ⃗x = Py⃗, where ˆ⃗x is an estimated copy of x⃗.

Conventional MU-MIMO detectors can work only when
the data packets are well aligned in time. Roughly speaking,
the time misalignment of data packets must be less than
the time duration of an OFDM symbol’s cyclic prefix [18].
For example, in 802.11ay, the time misalignment must be
less than 36.36ns [2]. In real systems, this requirement is
extremely hard to satisfy as many factors (e.g., propagation
delays, digital processing delays, and clock jitters) contribute
to the time misalignment. For this reason, uplink MU-MIMO
is not standardized in IEEE 802.11ac (sub-6GHz) [19] and
802.11ay (60GHz) [2].2

B. A Transformation of MMSE MU-MIMO Detector

Since it is hard to maintain the time alignment of the data
packets for the AP, we wish to design an MIMO detector
for the AP so that it can decode the misaligned data packets
as shown in Fig. 4. In this case, if the AP knows the MMSE
MIMO detector P in (16), then it should still be able to decode
those asynchronous data packets. This is because P is a spatial
filter and its effectiveness is not affected by the temporal
imperfections (i.e., time misalignment of data packets). In
other words, the spatial and temporal properties of data packets
are orthogonal to each other. The key question here is how to
obtain P when the AP receives asynchronous data packets.
In synchronous MU-MIMO, the data packets from different
stations carry orthogonal pilots for the AP to estimate the

2Note that 802.11ax is the only WLAN standard that supports uplink MU-
MIMO. Yet, there is still no 802.11ax product that supports this feature. In
addition, 802.11ax is more of a centralized rather than distributed network.

channel matrix H, based on which the AP can calculate P
using (16). In asynchronous MU-MIMO, the data packets from
different stations cannot maintain the orthogonality of their
pilots. As a result, the AP cannot estimate the channel H and
thus (16) does not work for this case.

To overcome this challenge, we show that a transformation
of the MMSE detector in (16) can eliminate the need of
channel knowledge H and obtain an approximation of P,
which allows the AP to decode those asynchronous data
packets separately. Denote Rn{·} as the nth row of a matrix
or a vector. Per the conventional MMSE detection, we have

x̂n = Rn{ˆ⃗x} = R{Py⃗} = Rn{P}y⃗ . (17)

Denote Rx as the correlation matrix of x⃗, i.e., Rx =
E[x⃗x⃗H]. Denote Rw as the correlation matrix of w⃗, i.e.,
Rw = E[w⃗w⃗H]. In practice, signal and noise are always
independent. Then, we have Rx = σ2

xI and Rw = σ2
wI. Per

(16), we have

Rn{P} = Rn

{
HH(HHH +

σ2
w

σ2
x

I)−1
}

(a)
= Rn

{
RxH

H(HRxH
H +Rw)

−1
}

= Rn

{
E[x⃗x⃗ H]HH(HE[x⃗x⃗H]HH + E[w⃗w⃗H])−1

}
= E[Rn{x⃗}x⃗ HHH]E[Hx⃗x⃗HHH + w⃗w⃗H]−1

= E[xn(Hx⃗)H]E[(Hx⃗+ w⃗)(Hx⃗+ w⃗)H]−1

(b)
= E[xn(Hx⃗+ w⃗)H]E[(Hx⃗+ w⃗)(Hx⃗+ w⃗)H]−1

= E[xny⃗
H]E[y⃗y⃗ H]−1, (18)

where (a) and (b) follow from the assumptions that Rx is of
full rank and E[xnw⃗] = 0, respectively. Both assumptions are
always valid in practice.

Eq. (18) shows that the MMSE detector can be computed
without channel knowledge, but using E[xny⃗

H] and E[y⃗y⃗ H].
Now a question to ask is how to compute these two terms. In
UMMC, we use the sample averaging operation to approach
statistic expectation based on the fact that every packet in
practical systems carries reference signals (a.k.a., pilots or
preamble) for signal detection. Consider the 802.11ay frame
shown in Fig. 4 for example. The reference signals include
L-STF, L-CEF, EDMG-STF, and EDMG-CEF, which are pre-
defined and known to all stations and APs. These reference
signals will be used to compute E[xny⃗

H] and E[y⃗y⃗ H] in (18).
In the following, we slightly abuse the notation by intro-

ducing l as the index of OFDM symbol and k as the index
of OFDM subcarrier. Denote An(k) as the set of reference
symbols (pilots) in the data packet transmitted by station n on
OFDM subcarrier k. Then, we have

p⃗n(k) ≜ Rn

{
P(k)} (18)

= E[xny⃗
H]E[y⃗y⃗ H]−1 (19)

≜
[ ∑
(l,k′)∈An(k)

xn(l, k
′)y⃗(l, k′)H

][ ∑
(l,k′)∈An(k)

y⃗(l, k′)y⃗(l, k′)H
]†
,

where (·)† is the pseudo-inverse operator, and xn(l, k
′) and

y⃗(l, k′) represent the transmitted and received reference signal
on OFDM symbol l and subcarrier k′, respectively.

With the MU-MIMO detector in (19), the AP decodes
the data packet from station n as follows: x̂n(l, k) =
p⃗n(k)

⊤y⃗(l, k), where y⃗(l, k) is the received payload signal



vector at the AP and x̂n(l, k) is its decoded payload signal
from station n, 1 ≤ n ≤ N .

C. Performance Analysis and Discussions
Performance Analysis. Since analyzing the performance

of the proposed detector in general settings is extremely
hard, we focus on an ideal case. Suppose that the number
of reference signals (e.g., pilots in L-STF, L-CEF, EDMG-
STF, and EDMG-CEF in Fig. 4) is greater than or equal to
the number of stations, i.e., |An(k)| ≥ N . Then, we have the
following lemma.

Lemma 1: If M ≥ N and σw = 0, the MU-MIMO detector
in (19) can perfectly recover the misaligned signals from the
asynchronous stations, i.e., x̂n(l, k) = xn(l, k) for 1 ≤ n ≤
N , 1 ≤ k ≤ K, and 1 ≤ l ≤ L.

Proof Sketch. We omit the subcarrier index k to simplify
the notation. Given that M ≥ N , H is a square or tall/thin
matrix. Then, based on (19), we have:

p⃗n
(a)
=

[ ∑
l∈An

xn(l)y⃗(l)
H
][ ∑

l∈An

y⃗(l)y⃗(l)H
]†

(b)
=

[ ∑
l∈An

xn(l)x⃗(l)
HHH

][ ∑
l∈An

Hx⃗(l)x⃗(l)HHH
]†

(c)
=

[
Rn{R̂x}HH

][
HR̂xH

H
]† (d)

= Rn

{
H†}, (20)

where (a) follows from (19) by omitting the subcarrier index
k; (b) follows from the fact that y⃗ = Hx⃗ when σw = 0;
(c) follows from our definition that R̂x =

∑
l∈An

x⃗(l)x⃗(l)H;
(d) follows from the fact that H is a square or tall matrix
since M ≥ N and that R̂x is a square matrix of full rank
since |An(k)| ≥ N . Based on (20), we have x̂n(l, k) =
p⃗n(k)y⃗(l, k) = Rn

{
H(k)†

}
y⃗(l, k) = xn(l, k). ■

In practice, the assumption of |An(k)| ≥ N and M ≥ N
are typically valid, but σw ̸= 0. For the realistic case, we will
evaluate this detector through experiments in Section VI-A.

Explicit Channel Knowledge is Not Needed. It is evident
that the MU-MIMO detector in (19) does not require explicit
channel knowledge H for packet detection. Instead, it uses the
reference signals in data packets to compute the detectors for
each individual data stream. As such, this MU-MIMO detector
is particularly suitable for an AP to decode asynchronous data
packets, while ZF/MMSE detector is incapable of doing so.

Unique Features of mmWave MU-MIMO. MmWave
communication systems are typically equipped with direc-
tional antennas (e.g., phased-array antenna), which signifi-
cantly reduce the multipath effect of channels. As a result,
the mmWave channels are more frequency-flat compared to
sub-6GHz systems. In addition, compared to SISO mmWave
WLANs (e.g., 802.11ad), MU-MIMO mmWave networks
(e.g., 802.11ay) have pilots in both legacy preamble (L-STF
and L-CEF) and enhanced preamble (EDMG-STF and EDMG-
CEF); see Fig. 4. Lemma 1 shows that these two properties
make the proposed asynchronous MMSE detector particularly
suitable for 802.11ay networks.

VI. PERFORMANCE EVALUATION

A. Experimental Results (Two-User MIMO Case)
Implementation: We built a 60 GHz MU-MIMO testbed that
comprises an AP and two stations as shown in Fig. 5. The AP

60 GHz RF 
frontend

4x8 Planar 
Antenna 1 and 2

USRP X310

(a) Two-antenna AP.

STA 1

STA 2

AP

(b) Experimental setup.
Fig. 5: Illustration of our prototype and experimental setup.

-27.5 -25 -22.5 -20 -17.5 -15 -12.5 -10 -7.5
EVM (dB)

0

2

4

6

Bi
ts

 c
ar

rie
d 

by
 a

 sa
m

pl
e

( i
.e

., 
(E

VM
) )

0

2

4

6

8

Th
ro

ug
hp

ut
 (G

bp
s)

Fig. 6: EVM specified in IEEE 802.11ay standard [2].

was built using two HMC6300 Boards (60 GHz RF Frontend)
and one USRP X310. We modified the clock circuits of the
two HMC6300 boards to synchronize their clock for MU-
MIMO applications. The AP was equipped with two planar
antennas, each of which has 4×8 patch elements. Each station
was built using one HMC6300 Board and one USRP X310,
and connected with a horn antenna. The two stations worked
independently, and there is no external clock to synchronize
their packet transmissions. The instantaneous bandwidth of
this MU-MIMO testbed is 100 MHz. We used GNURadio
OTT (in C++) to implement the signal processing modules
of a simplified 802.11ay PHY layer (512 FFT for OFDM
modulation, QPSK, without LDPC codes) for the uplink MU-
MIMO transmission. A demo video can be found in [20].

Experimental Setting. We consider three indoor scenarios
for our experiments. Scenario 1: short distance (2.5m) for
both stations. Scenario 2: long distance (5m) for both stations.
Scenario 3: short distance (2.5m) for station 1 and long
distance (5m) for station 2.

Performance Metrics. We use EVM and throughput as the
performance metrics. EVM is widely used for the performance
measurement of wireless receivers in industry. It was defined in
(2). Based on the measured EVM, we calculate the throughput
of 802.11ay networks as follows: rn = B · τofdm

τgi+τofdm
·

Ndata

Nfft
· γ(EVMn), where B = 2.64GHz is the sampling rate,

τgi = 36.36ns is the normal guard interval, τofdm = 194.56ns
is the OFDM symbol duration, Ndata = 336 is the number
of subcarriers for data, Nfft = 512 is the FFT size, and
γ(EVMn) is the adaptive rate specified by [2] and shown
in Fig. 6. Recall that our objective is to maximize the min-
imum of user’s throughput. Therefore, we denote EVM =
max(EVM1,EVM2) and Throughput = min(r1, r2).

Asynchronous MU-MIMO Detection. We first validate the
feasibility of the proposed asynchronous MU-MIMO detector
on the testbed, where the two stations are continuously trans-
mitting data packets but have no synchronization mechanism.
For both AP and stations, we perform exhaustive search
to find their best analog beams. Fig. 7(a-b) shows the two
constellation diagrams observed at the AP. It is clear that the



(a) STA 1’s signal in MU-MIMO (b) STA 2’s signal in MU-MIMO

(c) STA 1’s signal in SIMO (d) STA 2’s signal in SIMO

Fig. 7: Constellation diagram of the decoded signals at the AP.
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Fig. 8: Comparison of our proposed asynchronous MU-MIMO
technique and conventional SIMO technique.

proposed detector is able to decode the data packets in the
absence of inter-station synchronization.

As a comparison baseline, we also implemented the single-
input and multiple-output (SIMO) transmission scheme on the
testbed in the same settings. In this case, each station uses
a half of the airtime for packet transmission in turn (i.e.,
TDMA mode). When serving each station, the AP selects
its best antenna to decode its data packets. Fig. 7(c-d) shows
the two constellation diagrams observed at the AP. It can be
seen that the AP observes similar constellation diagrams in
the two cases. This reveals the effectiveness of our proposed
MU-MIMO detector in decoding asynchronous data packets.

We repeated the above tests in all three scenarios to quantify
the EVM and throughput of the two techniques (Async MU-
MIMO and SIMO). Fig. 8(a) shows the EVM comparison. It
shows that the two techniques have a similar EVM. This is a
bit surprising, because in theory SIMO should offer a better
(e.g., 3 dB) EVM performance than Async MU-MIMO. We
conjecture that it was caused by the non-negligible phase noise
of 60GHz mmWave RF devices. Phase noise increases linearly
with carrier frequency in communication systems. When phase
noise is strong, it dictates the communication performance and
marginalizes the difference caused by other factors.

Fig. 8(b) shows the throughput comparison. It can be seen
that Async MU-MIMO almost doubles the throughput of
SIMO. This is because the AP can only serve the stations
in turn in SIMO, while Async MU-MIMO allows the AP to
serve both stations simultaneously.

Impact of MU-MIMO Channel Correlation. For the two
antennas at the AP, we consider two approaches for their beam
search: i) exhaustive separate search, and ii) exhaustive joint
search. In the separate search, each individual antenna finds

TABLE I: Comparison of exhaustive separate beam search
and exhaustive joint beam search.

Scenario 1 Scenario 2 Scenario 3
Search approach Joint Separate Joint Separate Joint Separate

Best angle for ant 1 (θ∗
1 ) -30◦ -45◦ -30◦ -13◦ 30◦ -47◦

Best angle for ant 2 (θ∗
2 ) 15◦ -23◦ -30◦ -24◦ 30◦ 25◦

EVM (dB) -16.2 -13.0 -13.7 -10.0 -14.5 -10.1
Throughput (Gbps) 3.65 2.28 2.28 0.91 2.37 1.46
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Fig. 9: Comparison of BayOpt and exhaustive search.

the beam angle that maximizes its signal strength. In the joint
search, the two antennas try all possible beam combinations to
find the one that maximizes the bottleneck of user data rates.

Table I shows our experimental results. It is clear that joint
and separate search approaches lead to different beam results.
Consider scenario 1 for example. When using separate beam
search, the optimal angle is -45◦ for antenna 1 and -23◦ for
antenna 2. This combination is optimal in terms of the signal
strength at each individual antenna, but it is not optimal in
terms of user throughput. For the joint search approach, the
combination (-30◦, 15◦) yields the best EVM and thus the best
user throughput. Similar phenomena can also be observed in
scenarios 2 and 3. This confirms that signal strength is not a
good criterion for beam search in MU-MIMO systems.

BayOpt Search versus Exhaustive Search. Using the
proposed MU-MIMO detector, we compare two joint beam
search approaches: BayOpt search and exhaustive search. For
exhaustive search, we search the beams for each antenna
every 5 degrees, and the search range is from -60◦ to 60◦.
So the total number of beam combinations for search is
(120/5 + 1)2 = 625. Fig. 3 shows an instance of exhaustive
search results. For BayOpt search, we fix the number of
search iterations (evaluations) to 20. Therefore, the overhead
of BayOpt search is only 3.2% of the exhaustive search.

Fig. 9 shows the comparison of these two joint beam search
approaches in three scenarios. It can be seen that BayOpt
can achieve a similar EVM and throughput performance of
exhaustive search. More accurately, BayOpt achieves 94.3%
throughput of exhaustive search. It is important to point out
that the throughput in Fig. 9(b) does not take into account
the airtime overhead of beam training. If the beam training
overhead is taken into consideration, BayOpt would easily
outperform exhaustive search.

B. Simulation Results (More-User MIMO Case)

Due to the hardware limitation, we resort to simulations
for the evaluation of BayOpt in more-user MIMO cases.
We consider a 400ft2 conference room where the AP is
deployed on a wall and 100 users are uniformly and randomly
distributed over the whole room. We use the model in [21] to
calculate the path loss based on the distance between a user
and the AP, and use the model in [22] to generate the gain
of phased-array antennas for a given direction. In each time
slot, the AP randomly selects N users for uplink MU-MIMO
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(a) Two-user MIMO case.
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(b) Three-user MIMO case.
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(c) Four-user MIMO case.

Fig. 10: Throughput comparison of Separate beam search, BayOpt beam search, and exhaustive search.

TABLE II: Representative work on beam search in literature.
Beam search technique Approach
Learning-based search: [26], [27],
[28], [29]

Train the machine learning model to pre-
dict the current best beam direction.

Out-of-Band assistance: [6], [30], [7],
[31], [9], [32]

Utilize the out-of-band information (sub-
6GHz, light, camera) to align the beam.

Compressive sensing: [33], [10] Finding the best alignment beam direc-
tion with sparse measurement.

Hierarchical search: [34], [35], [36],
[37], [38], [39]

Design a beamforming codebooks and
training in a hierarchical way.

transmission, where N ∈ {2, 3, 4} as defined in 802.11ay.
In the simulations, we focus on the comparison of three
different beam search approaches (separate exhaustive search,
joint exhaustive search, and BayOpt) without considering
packet misalignment issue. An ideal MMSE detector is used
to decode concurrent packets and calculate their EVM and
throughput.

We present the simulation results in Fig. 10. Compared
to separate exhaustive search, BayOpt-30 (BayOpt with 30
iterations) has a similar airtime overhead (30 vs. 33 iterations),
but it improves the throughput by 95.8%, 109.8%, and 267.2%
in the two-user, three-user, and four-user cases, respectively.
Compared to joint exhaustive search, BayOpt-50 achieves
88.6% throughput with 4.6% overhead in two-user MIMO
case, 82.1% throughput with 0.1% overhead in three-user
MIMO case, and 83.5% throughput with 0.004% overhead in
four-user MIMO case. Note that the throughput presented in
Fig. 10 does not take into account beam search overhead.

VII. RELATED WORK

This work is relevant to mmWave MIMO communications,
beam search, MU-MIMO detection, and system prototyping.

802.11ad/ay and Cellular Networks. In 2012, the IEEE
802.11ad amendment standardized communication in 60 GHz
unlicensed band to offer up to 6.75 Gbps data rate in a
short range [11]. While 802.11ad devices may have multiple
antennas, they do not support MU-MIMO transmission. As
a follow-up, 802.11ay was standardized in 2020 [2], which
supports new features including channel bonding, higher-order
modulation, and downlink MU-MIMO. However, it does not
support uplink MU-MIMO yet. The 3GPP specification for 5G
cellular networks has already supported MU-MIMO, hybrid
beamforming, and mmWave communications in the 24–53
GHz band [23]. While abundant literature has studied the beam
design and MU-MIMO for mmWave, most of them are limited
to signal processing and numerical analysis [24], [25].

Beam Search. There is a large body of work on beam
training for mmWave communications. Table II lists some
of the representative works and their basic ideas. Of existing

work, most focuses on finding the best beam in a predefined
beambook to maximize signal strength while minimizing the
associated cost. As we explained before, maximizing the signal
strength is not a good strategy for MU-MIMO.

Uplink MU-MIMO in Sub-6GHz Networks. Uplink MU-
MIMO has been supported in 4G cellular networks and will
be supported by 5G and beyond [40]. In contrast, the way
of uplink MU-MIMO to 802.11 standards was rocky. Thus
far, no on-market WiFi devices support uplink MU-MIMO.
Similar to 802.11ay, 802.11ac supports downlink MU-MIMO
but does not support uplink MU-MIMO [19]. This can be
attributed to the fact that WLANs are distributed, contention-
based systems and lack inter-user coordination. Although
802.11ax will support uplink MU-MIMO, the symbol-level
synchronization remains an outstanding challenge [41].

Inter-User Synchronization for Uplink MU-MIMO. Tim-
ing advance (TA) is the main mechanism used in wireless net-
works to compensate inter-user time misalignment and offset
the signal propagation delays for uplink MU-MIMO and other
multi-access technologies. Per [42] and [43], the timing error
achieved by TA in cellular networks cannot meet the require-
ment of mmWave MU-MIMO based on the 802.11ay numerol-
ogy. [44] validated the throughput gain of MU-MIMO via
offline experiments but did not address the timing problem.

VIII. CONCLUSION

In this paper, we presented a practical yet efficient uplink
MU-MIMO communication (UMMC) scheme for mmWave
networks. This scheme has two key components: BayOpt for
beam search and asynchronous MU-MIMO detection. UMMC
provides the first BayOpt framework for beam search in
mmWave MU-MIMO systems, and introduced a new MU-
MIMO detector that can decode asynchronous data packets
from multiple users. It has demonstrated through both theory
and experiments that fine-grained inter-user synchronization
is not needed for uplink MU-MIMO transmission. We have
evaluated the performance of UMMC through a blend of
experiments and simulations. Experimental and simulation
results confirm the practicality and efficiency of UMMC.
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