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ABSTRACT

Sub-6GHz radio sensing offers several compelling advan-
tages, such as resilience to poor lighting conditions, privacy
preservation, and the ability to see through walls. However,
in indoor environments, the sub-6GHz ISM spectrum is heav-
ily occupied byWiFi devices, leaving little available spectrum
for sensing purposes. In this paper, we introduce SiWiS, a
new approach to integrate radio sensing capabilities into
individual WiFi devices for fine-grained human activity de-
tection. SiWiS comprises two main components: (i) a new
hardware component that can be easily installed on an off-
the-shelf WiFi device, and (ii) a dual-branch deep neural
network (DNN) optimized for concurrent human mask seg-
mentation and pose estimation. We have built a prototype
of SiWiS and installed it on a commercial WiFi router for
evaluation. Extensive experimental results demonstrate a sig-
nificant performance improvement over WiFi channel state
information (CSI) based sensing methods. More importantly,
zero-shot experiments confirm that SiWiS can be directly
transferred to unseen real-world environments.

CCS CONCEPTS

• Computer systems organization→ Sensors and actua-
tors; • Computing methodologies → Computer vision.
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Figure 1: Schematic diagram of SiWiS. Red components
are sensing module add-on. RX0 serves as Local Oscil-
lator (LO) for the mixer, while other RX antennas are
used to receive the reflective signals. No inside modifi-
cations are needed for the off-the-shelf WiFi device.
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1 INTRODUCTION

Fine-grained human activity recognition is an important re-
search area that has attracted efforts from different commu-
nities. In computer vision, many camera-based technologies
[27, 34, 42, 44, 51, 55, 63, 64, 66, 76] have been developed
that can detect human body keypoints with high accuracy.
However, these camera-based techniques face significant
challenges in large-scale deployment, including video pri-
vacy concerns and high data transmission bandwidth re-
quirements. Furthermore, in scenarios with poor illumina-
tion, or when subjects are occluded, the performance of
cameras diminishes significantly, resulting in inaccurate
detections. In light of these issues, radio sensing methods
[20, 25, 36, 37, 49, 50, 72–74, 77] have been regarded as a
complementary approach. These methods involve collecting
data through radio devices and using camera-based technolo-
gies to synchronously extract human body part annotations,
which then serve as supervisory signals for the radio data.
Unlike visible light, which can be obstructed by walls and
objects, radio signals can penetrate these barriers and reflect
off the human body. This capability allows for stable track-
ing of the human body in diverse scenarios, overcoming the
limitations of camera-based technologies.
Among radio sensing methods, WiFi channel state infor-

mation (CSI) based sensing stands out due to the prevalence
and cost-effectiveness of WiFi devices. Current methods
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[20, 36, 37, 46, 47, 49, 50, 70, 77] primarily utilize CSI data,
obtained directly from off-the-shelf WiFi devices, to estimate
the spatial coordinates of human body parts. However, CSI-
based WiFi sensing has two fundamental limitations: First,
CSI measurement requires at least two WiFi devices—one
for transmitting and one for receiving. Due to the physi-
cal separation between the WiFi transmitter and receiver,
the measured CSI inevitably suffers from carrier frequency
offset (CFO), sampling time offset (STO), and carrier phase
offset (CPO). While CFO and STO can be corrected, CPO can-
not, which imposes a fundamental limit on the performance
of CSI-based sensing methods (see §2.2). Second, the CSI
measured by a WiFi device is a reflection of its surrounding
environment. Due to CPO, CSI-based sensing methods are
susceptible to environmental changes. This susceptibility im-
pedes the effective transfer of trained deep learning models
to new scenes (see §4.6), thereby limiting the widespread
application of CSI-based sensing in real-world WiFi systems.

In this paper, we propose SiWiS, a joint hardware and soft-
ware design that integrates radio sensing capabilities into
individual WiFi devices for fine-grained human activity
detection. SiWiS does not emit any radio signals; instead, it
leverages its host WiFi device’s OFDM signal for sensing.
Since the transmitter and receiver are co-located on the same
WiFi device, SiWiS does not suffer from CFO, STO, or CPO,
thereby addressing the two fundamental limitations of CSI-
based sensing methods. As shown in Fig. 1, SiWiS comprises
two main components: (i) a new hardware module that can
be attached to a commercial WiFi device, and (ii) a deep neu-
ral network (DNN) optimized for concurrent human mask
segmentation and pose estimation. The combination of these
components enables a WiFi device to detect fine-grained
human activities using its OFDM signals.
For the design of SiWiS, since WiFi devices operate in

time-division duplexing (TDD) mode, preventing them from
receiving reflective signals while transmitting, we install an
array of patch antennas on the device’s surface and incorpo-
rate an RF circuit component dedicated to receiving these
reflective signals. A key challenge involves the RF circuit de-
sign. The reflective signals received by SiWiS are in RF form
and need to be converted to intermediate frequency (IF) for
feature extraction. On one hand, traditional methods, such as
using a Local Oscillator (LO) for down-conversion, face limi-
tations due to CFO and STO between the WiFi modem and
the sensing oscillator. On the other hand, WiFi modems are
highly integrated with no user-accessible external interfaces,
making it impossible to obtain the necessary frequency and
timing clocks for the sensing circuit, even though they are
physically co-located. To address this challenge, SiWiS em-
ploys a novel self-mixing architecture that involves mixing
reflective WiFi signals with a “local” ambient WiFi OFDM
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Figure 2: WiFi frame structure.

signal. This self-mixing approach not only enables phase-
coherent sensing but also ensures compatibility with COTS
WiFi devices.

To achieve fine-grained human activity detection, SiWiS
employs a dual-branch DNN designed for concurrent mask
segmentation and pose estimation. It first extracts feature
vectors from the input WiFi-based sensing signal using a
signal encoder. Given that reflections from certain body parts
may not be captured within short time intervals, potentially
resulting in de-emphasized or missing key information, Si-
WiS incorporates a self-attention block into the signal en-
coder to establish connections across longer sequences of
signal frames. Furthermore, to enhance the adaptability of
the signal encoder to both mask segmentation and pose es-
timation tasks, SiWiS employs a cross-attention block to
establish fine-grained spatial pixel feature connections.

We have built a prototype of SiWiS using a custom-designed
PCB and optimized patch antennas, and installed it on a
COTSWiFi router for experimental evaluation. Extensive ex-
perimental results demonstrate a significant improvement of
SiWiS compared to CSI-based WiFi sensing methods. More
importantly, zero-shot experiments confirm that SiWiS can
be directly transferred to unseen real-world environments.

The contributions of this paper are summarized as follows:

• SiWiS represents the first approach to enable fine-grained
human detection using a single WiFi device. This method
is also applicable to other radio communication devices,
such as 5G and Bluetooth, opening up new possibilities
for integrated communication and sensing across a wide
range of systems.

• SiWiS achieves phase-coherent sensing on a WiFi device
by employing a self-mixing architecture. This feature is
crucial for ensuring the system’s effectiveness in unseen
scenarios, significantly broadening its applicability.

• Extensive experiments validate the superior performance
of SiWiS compared to CSI-based WiFi sensing methods.
Additionally, zero-shot evaluation results demonstrate
that SiWiS can be directly transferred to unseen scenarios.

2 SINGLE WIFI DEVICE FOR SENSING

2.1 Primer on WiFi CSI

WiFi (except for 802.11b) uses OFDM modulation for data
transmission. In OFDMmodulation, CSI refers to the complex
channel coefficients across its OFDM subcarriers. Let 𝑋𝑘

denote the original signal on OFDM subcarrier 𝑘 at a WiFi
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Figure 3: System model of WiFi communications.
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Figure 4: Relation between person movement and mea-
sured CSI.

TX, and 𝑌𝑘 denote the received signal on OFDM subcarrier 𝑘
at aWiFi RX. Then, the data transfer function can bemodeled
as: 𝑌𝑘 = 𝐻𝑘𝑋𝑘 +𝑊𝑘 , where 𝐻𝑘 is the channel coefficient
of OFDM subcarrier 𝑘 between TX and RX, and𝑊𝑘 is the
noise on OFDM subcarrier 𝑘 at the RX. Denote 𝐾 as the
total number of valid OFDM subcarriers in WiFi. Then, H =
[𝐻1, 𝐻2, . . . , 𝐻𝐾 ] is referred to as WiFi CSI, which plays a
crucial role in the channel equalization of its data packets.
For example, with channel 𝐻𝑘 , the WiFi RX can estimate the

original signal by 𝑋𝑘 = 𝑌𝑘
𝐻𝑘

if the noise is small.

To facilitate the channel estimation, WiFi signals are struc-
tured in the frame format as shown in Fig. 2. Each frame has
a preamble, which is defined in the IEEE 802.11 standards and
known to every WiFi device. The preamble includes legacy
short training field (L-STF) and legacy long training field (L-
LTF). The L-STF is used for basic synchronization and coarse
frequency offset correction, and the L-LTF is used for more
accurate channel estimation and fine synchronization. They
were meticulously designed to maximize WiFi RX’s channel
estimation accuracy and packet-decoding performance.

Ideally, CSI should be determined solely by the over-the-air
(OTA) channel between WiFi TX and WiFi RX, characteriz-
ing physical factors such as distance, reflectors, and other
surrounding objects. However, due to imperfections in RF
circuits, the CSI measured at a WiFi device is a reflection of
three components: TX RF response, OTA channel, and RX
RF response, as shown in Fig. 3. Particularly, since the RF
mixers in the TX and RX are driven by different oscillators,
the CSI measured at the RX inevitably suffers from three
imperfections: CFO, STO, and CPO.

While CFO and STO can be estimated and corrected, CPO
cannot. Fortunately, CPO does not affect the decoding of
data packets because it is addressed by channel equalization.
However, when CSI is used for sensing purposes, the random-
ness of CPO imposes a fundamental limitation on sensing

Figure 5: The amplitude (left) and phase (right) of CSI
measured over 100 consecutive WiFi packets in a static
scenario.

performance. This is because the CSI observed by a WiFi
device is not the OTA CSI. The presence of CPO prevents
the estimation of the phase information of OTA CSI across a
series of data packets, which would otherwise be useful for
inferring object movement distances. This constitutes a key
difference between CSI sensing and radar sensing. We will
elaborate on this issue below.

2.2 Limitations of WiFi CSI Sensing

WiFi and CSI were originally designed for communication
purposes. When repurposed for sensing, WiFi CSI encoun-
ters two fundamental limitations. First, it requires at least
two WiFi devices working together to measure CSI. This
complicates the system setup and limits its applicability. Sec-
ond, the CSI measured by a WiFi device is not OTA CSI. Due
to the existence of CPO between WiFi TX and RX, CSI-based
sensing lacks phase coherence over time. Therefore, this ap-
proach is susceptible to environmental changes and thus
not easy to be generalized to new (unseen) scenes. In what
follows, we explain this limitation in detail.

Consider a simpleWiFi CSI sensing case as shown in Fig. 4.
Suppose that there are two OTA paths from TX to RX. One
is line-of-sight (LoS) path, and the other is person-reflected
path. Denote ℎ0 ∈ C as the LoS path channel, which remains
unchanged over time. Denote ℎ1 ∈ C and ℎ2 ∈ C as the
person-reflected path channels when TX sends packet 1 (at
time 𝑡1) and packet 2 (at time 𝑡2), respectively. If there were
no CFO, STO and CPO, the measured CSI from those two
packets can bewritten as:𝐻1 = ℎ0+ℎ1 and𝐻2 = ℎ0+ℎ2, where
𝐻1 and 𝐻2 are the measured CSI at the two time moments.
Then, the measured CSI change at the RX can be written as:
Δ𝐻 = 𝐻2 −𝐻1 = ℎ2 − ℎ1. This provides two insights: (i) the
measured CSI change is caused solely by object movements;
and (ii) the measured CSI change is independent of static
paths. It means that the object movement can be inferred
based on the measured CSI sequence. Moreover, since the
measured CSI change is not affected by the static objects in
the environment, the inference can be generalized to new
(unseen) scenes. This is a case of phase-coherent sensing.
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Unfortunately, while CFO and STO can be estimated and
corrected at RX, CPO can,1 making it impossible to derive the
OTA CSI based on the measured CSI. Due to the existence
of CPO, the measured CSI from packets 1 and 2 should be
modeled as 𝐻1 = (ℎ0 +ℎ1)𝑒 𝑗𝜃1 and 𝐻1 = (ℎ0 +ℎ2)𝑒 𝑗𝜃2 , where
𝜃1 and 𝜃2 are unknown random phases caused by CPO. Evi-
dently, the phase information of the measured CSI sequence
is not useful at all in the inference of object movements. To
illustrate this point, Fig. 5 plots the phase of our measured
CSI over 100 packets (on one subcarrier) from a laptop using
Intel 5300 NIC CSI tool. The 100 consecutive packets last
for about one seconds. During this time period there are no
object movements. We can see that the CSI phase is random
across consecutive packets.
For this reason, CSI-based sensing approaches primarily

rely on the CSI amplitude sequence (i.e., |𝐻1 |, |𝐻2 |, . . .) to
infer object movements. Since the measured CSI amplitude
is influenced by both dynamic and static objects, these ap-
proaches have limited generalizability and transferability to
unseen scenarios.

2.3 Our Design

To achieve phase-coherent sensing on a single WiFi device,
SiWiS designs a new hardware component that can be easily
attached on a vast majority of COTS WiFi devices such as
WiFi routers, laptops, desktops, and smart TV. SiWiS employs
two techniques: (i) self-mixing ofWiFi OFDM signals, and (ii)
patch antennas for sensing directivity. These two techniques
enable individual WiFi devices to achieve Doppler-radar-like
phase-coherent sensing capabilities.
Fig. 1 shows the hardware component of SiWiS. One

dipole/patch antenna (RX0) was installed facing the WiFi
communication antennas to obtain a local copy of WiFi
OFDM signal, which will be used as the LO for the RF mixer.
Multiple patch antennas are installed on one side of the WiFi
device to receive the reflective OFDM signals from target
objects. The use of patch antennas serves two purposes: (i) to
reduce self-interference from WiFi TX antennas, and (ii) to
maximize the strength of received signals reflected frommov-
ing objects. To reduce the hardware complexity, an RF switch
is used for the sharing of a single RF chain. The received
signals are first amplified using LNA (low noise amplifier)
and then mixed with LO for down conversation. The output
of mixers is sampled using ADC (analog-to-digital converter)
for digital signal processing and learning-based inference.
For this design, we have the following remarks.

1While the literature includes work on CPO estimation and correction,

existing research primarily focuses on intra-packet CPO correction rather

than inter-packet CPO correction. Therefore, current approaches are not

applicable in this context.
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Figure 6: Reflective signals of static/moving objects.

• Joint communication and sensing: On one hand, the
communication and sensing subsystems are physically
independent. These two subsystems do not interfere with
each other. On the other hand, SiWiS is a joint communi-
cation and sensing system. The sensing subsystem does
not emit radio waves. Instead, it leverages ambient WiFi
OFDM signals to realize its sensing functions.

• Moving object detection: SiWiS is fundamentally differ-
ent from FMCW radar. FMCW radar can detect both static
and moving objects, thanks to its FMCW waveform and
its wide spectrum band (e.g., 100s MHz). However, SiWiS
relies on WiFi OFDM signals for sensing. It does not have
spectrum coexistence issues with WiFi communication
systems. Like a Doppler radar, it is suited for detecting
moving objects, not static objects.

• Installation on COTSWiFi devices: SiWiS can be easily
installed on a COTSWiFi device such asWiFi router, smart
TV, and laptop. It requires no modifications inside WiFi
devices. If a WiFi device is of a small size and does not
have enough surface for patch antennas, SiWiS can be
placed in the close proximity of the WiFi device.

2.4 Feature Extraction for Sensing

2.4.1 Mathematical Modeling. For simplicity, we first con-
sider one sensing antenna of SiWiS. Denote 𝑥 (𝑡) as the base-
band OFDM signal of a WiFi frame. Then, the WiFi RF signal
can be written as 𝑠 (𝑡) = 𝑥 (𝑡)𝑒 𝑗2𝜋 𝑓𝑐𝑡 , where 𝑓𝑐 is the carrier
frequency of a WiFi channel at 2.4 GHz or 5 GHz. Denote
R and M as the sets of static and moving reflectors in the
environment, as shown in Fig. 6. Then, the RF signal received
by one sensing antenna can be written as:

𝑟 (𝑡) =
∑

𝑖∈R∪M
𝛼𝑖𝑥 (𝑡 − 𝜏𝑖 )𝑒 𝑗2𝜋 𝑓𝑐 (𝑡−𝜏𝑖 ) , (1)

where 𝛼𝑖 ∈ R
+ and 𝜏𝑖 ∈ R

+ are the attenuation and delay of
the reflective signal from reflector 𝑖 ∈ R ∪M.
As shown in Fig. 1, SiWiS mixes the received RF signal

(from RX1, RX2, RX3, or RX4) with the local copy from its
antenna RX0. Since RX0 is physically close to WiFi’s TX
antennas, the LoS path is dominant compared to the non-
LoS paths. Therefore, we use 𝑠 (𝑡) to approximate the LO for
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Figure 7: Illustration of the mixer’s output signal 𝑦 (𝑡):
amplitude (up) and phase (bottom)

mixing. Then, the output of the mixer can be written as:

𝑦 (𝑡) = 𝑟 (𝑡)𝑠 (𝑡)∗ =
∑

𝑖∈R∪M
𝛼𝑖𝑥 (𝑡 − 𝜏𝑖 )𝑥 (𝑡)∗𝑒− 𝑗2𝜋 𝑓𝑐𝜏𝑖 , (2)

where (·)∗ is complex conjugate operator.
Denote 𝑑𝑖 as the distance between SiWiS and reflector

𝑖 ∈ R ∪M. Then, Eqn (2) can be written as:

𝑦 (𝑡) =
∑

𝑖∈R∪M
𝛼𝑖𝑥 (𝑡 − 2𝑑𝑖

𝑐
)𝑥 (𝑡)∗𝑒− 𝑗 4𝜋𝑐 𝑓𝑐𝑑𝑖 , (3)

where 𝑐 is light speed. A sample of 𝑦 (𝑡) from the RF mixer
is illustrated in Fig. 7.
Suppose that the mixer’s output signal is sampled with

time interval Δ𝑡 (50 ns for 20 MHz WiFi). Then, the digital
version of 𝑦 (𝑡) can be written as:

𝑦 (𝑛Δ𝑡) =
∑

𝑖∈R∪M
𝛼𝑖𝑥 (𝑛Δ𝑡 − 2𝑑𝑖

𝑐
)𝑥 (𝑛Δ𝑡)∗ e− 𝑗 4𝜋𝑐 𝑓𝑐𝑑𝑖 , (4)

where 𝑛 is the signal sample index in the time domain.

2.4.2 Signal Feature Analysis. Using 𝑦 (𝑛Δ𝑡) in Eqn (4), 𝑛 =
1, 2, . . ., to infer the movement pattern of an object is chal-
lenging for two reasons. First, the WiFi OFDM signal 𝑥 (𝑡)
is time-varying, depending on its payload data. Second, the
WiFi signal transmission power is not fixed and is subject to
power adaptation control. These factors make it challenging
to extract stable features from the mixer’s output signal. To
address this challenge, we take advantage of the preamble in
each WiFi frame. We sum the mixer’s output signal 𝑦 (𝑛Δ𝑡)
over the data samples corresponding to the L-LTF in a WiFi
frame. Denote Bltf as the set of data samples corresponding
to the L-LTF in a WiFi frame. Then, we define

𝑌 =
∑

𝑛∈Bltf

𝑦 (𝑛Δ𝑡). (5)
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Figure 8: Amplitude (left) and phase (right) of 𝑔(𝑑𝑖 ).
Based on Eqn (4) , we have

𝑌
(𝑎)
=

∑
𝑖∈R

∑
𝑛∈Bltf

𝛼𝑖𝑥 (𝑛Δ𝑡 − 2𝑑𝑖
𝑐
)𝑥 (𝑛Δ𝑡)∗𝑒− 𝑗 4𝜋𝑐 𝑓𝑐𝑑𝑖 + (6)

∑
𝑖∈M

∑
𝑛∈Bltf

𝛼𝑖𝑥 (𝑛Δ𝑡 − 2𝑑𝑖
𝑐
)𝑥 (𝑛Δ𝑡)∗𝑒− 𝑗 4𝜋𝑐 𝑓𝑐𝑑𝑖 (7)

(𝑏 )
= 𝐶s +

∑
𝑖∈M

𝛼𝑖

( ∑
𝑛∈Bltf

𝑥 (𝑛Δ𝑡 − 2𝑑𝑖
𝑐
)𝑥 (𝑛Δ𝑡)∗

)
𝑒− 𝑗 4𝜋𝑐 𝑓𝑐𝑑𝑖 , (8)

where 𝐶s ∈ C is a constant complex number. Eqn (a) results
from separating the reflections from static andmobile objects.
Eqn (b) follows from the fact that the reflection from static
objects remains constant after summing the L-LTF samples.
We now focus on the term in the parenthesis in Eqn (8).

Define

𝑔(𝑑𝑖 ) =
∑

𝑛∈Bltf

𝑥 (𝑛Δ𝑡 − 2𝑑𝑖
𝑐
)𝑥 (𝑛Δ𝑡)∗, (9)

where 𝑐 = 3 × 108 m/s, Δ𝑡 = 50 ns for 20 MHz WiFi. For
𝑛 ∈ Bltf , 𝑥 (𝑛Δ𝑡) is the waveform of L-LTF in IEEE 802.11.
Fig. 8 plots the numerical results of 𝑔(𝑑𝑖 ). Evidently, when
𝑑𝑖 ≤ 10 m, 𝑔(𝑑𝑖 ) is a real number, i.e., 𝑔(𝑑𝑖 ) ∈ R.

Denote [·]ac as the operation of removing the DC compo-
nent of a signal vector. Then, we have

[𝑌 ]ac =
∑
𝑖∈M

𝛼𝑖 · 𝑔(𝑑𝑖 ) · 𝑒− 𝑗 4𝜋𝑐 𝑓𝑐𝑑𝑖 . (10)

Eqn (10) characterizes the relationship between SiWiS’s
observed signal [𝑌 ]ac and object distance 𝑑𝑖 . Given that 𝛼𝑖 ,
𝑐 , 𝑓𝑐 , 𝑑𝑖 , and 𝑔(𝑑𝑖 ) in Eqn (10) are all real numbers, we can
immediately derive the following lemma.

Lemma 2.1. If there is a single moving object of small physi-

cal size, then the phase of SiWiS’ observed signal, i.e., arg
([𝑌 ]ac) ,

is a linear function of object distance 𝑑 .

Based on Lemma 2.1, we have the following remarks.

• Signal phase vs. distance: SiWiS achieves a determinis-
tic (linear) relationship between its observed signal phase

and object moving distance. This is a sharp contrast to exist-
ing CSI-based sensing approaches, where the CSI phase ap-
pears to be random as shown in Fig. 5. This feature makes
it possible for SiWiS to detect sub-centimeter movements,
achieving phase-coherent sensing like Doppler radars. Ex-
perimental results will be provided to validate this feature
shortly.
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Figure 9: Illustrating the feature extraction operations.

• WiFi’s TX power adaptation: A COTS WiFi device may
use different power levels for transmitting various data
packets, depending on channel condition and packet type.
While this power adaptation affects the amplitude of Si-
WiS’s observed signals, it does not impact their phase, as
demonstrated by Lemma 2.1. Therefore, the phase feature
is resilient to WiFi power adaptation.

• Reflective signal separation: Lemma 2.1 was derived
under the assumption that there is a single moving object
of small physical size. In practice, there may be multiple
moving objects, or the object size may be large. In this
case, we rely on multiple sensing antennas to differentiate
the objects in the spatial domain and on the DNN to disen-
tangle the underlying relationship between the observed
signal features and the object movements.

2.4.3 Feature Extraction Algorithm. Based on the above anal-
ysis, we summarize SiWiS’s feature extraction operations in
Fig. 9. With a bit abuse of notation, we denote 𝑦𝑚 (𝑛Δ𝑡, 𝑘)
as the mixer’s output signal, where 𝑚 is the sensing an-
tenna index, 𝑛 is the data sample index of a WiFi packet,
Δ𝑡 is the time sampling interval, and 𝑘 is the index of de-
tected WiFi packets. Then, we define the signal feature by
letting: 𝑌𝑚 (𝑘) = [∑

𝑛∈Bltf
𝑦𝑚 (𝑛Δ𝑡, 𝑘)]

ac
. Collectively, the fea-

ture data tensor is written as:

S𝑘 = [𝑡𝑘 , 𝑌1 (𝑘), 𝑌2 (𝑘), . . . , 𝑌𝑀 (𝑘)], 1 ≤ 𝑘 ≤ 𝐾packet, (11)

where𝑀 is the number of sensing antennas, 𝑡𝑘 is the times-
tamp of WiFi packet 𝑘 , and 𝐾packet is the total number of
detected WiFi packets. S𝑘 , 𝑘 = 1, 2, . . ., is then streamed into
the dual-branch DNN in §3 for human pose estimation and
mask segmentation.

2.5 Feature Validation

For ease of exposition, we focus on𝑌1 (𝑘) in Eqn (11). We con-
duct experiments to validate the relationship between 𝑌1 (𝑘)
and the object movement distance in two scenarios. In the
first scenario, we keep the scene static and measure 𝑌1 (𝑘) for
1,500WiFi packets, which last for 3 seconds. Fig. 10a presents
the measured 𝑌1 (𝑘). We can see that its amplitudes have two
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(b) Observations in moving scenario.

Figure 10: Measured amplitude (left) and phase (right)
of signal 𝑌1 (𝑘), 𝑘 = 0, 1, . . . , 1, 500, in static and moving
scenarios.

distinct levels. This was caused by WiFi’s TX power adap-
tation. More importantly, the phase of 𝑌1 (𝑘) remains stable

across data packets (i.e., over time). This is in a sharp contrast

to the measured CSI phase shown in Fig. 5, which is random

over time.

In the second scenario, we have one person standing in
front of the WiFi device and moving himself towards it.
Fig. 10b plots the measured signal 𝑌1 (𝑘) across 1,500 WiFi
packets, which also last for 3 seconds. Evidently, there is a
deterministic relationship between the observed phase and the

human moving distance. The relationship is not perfectly lin-
ear. This was caused by the inconstant moving speed and the
large size of human body. Over this time period, the phase
change is 14.5 radians, which correspond to a distance of
11.9 cm in theory. Our manual measurement of the person’s
movement distance is 12.5 cm. This result roughly agrees
with the theoretical value, demonstrating the usefulness of
signal phase for estimating object movement distance.

Similar relationshipswere also observed on𝑌2 (𝑘), . . . , 𝑌𝑀 (𝑘).
These experimental results confirm that SiWiS is a phase-
coherent sensing approach. This lays a concrete foundation
for the DNN design and underscores the reason why SiWiS
outperforms CSI-based sensing approaches.

2.6 Interference Resilience and Removal

2.6.1 Interference from Other WiFi devices. Consider the
case where multiple WiFi devices are in the same area. A
question to ask is how SiWiS can determine whether its ex-
citation OFDM signal is from its host WiFi device or from
a non-host WiFi device. To answer this question, we define
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Figure 12: The mixer’s output signal 𝑦 (𝑡) when the ex-
citation signal is from Bluetooth: amplitude (up) and
phase (bottom)

a new metric 𝑃 =
∑𝑀

𝑚=1 |𝑌𝑚 (𝑘) |2 for SiWiS. We conducted
experiments to examine the relationship between 𝑃 and 𝐷 ,
where 𝐷 is the distance between SiWiS and its excitation sig-
nal source. Fig. 11 displays our measurement results across
three different scenarios. It can be seen that 𝑃 decreases
rapidly as 𝐷 increases, and 𝑃 = 0 for 𝐷 ≥ 1 meter. This
suggests that SiWiS can use the value of 𝑃 to determine
whether its excitation signal is from its host WiFi device.
SiWiS can discard all received WiFi frames where 𝑃 ≤ 𝑃thres,
where 𝑃thres is a threshold that can be empirically set (e.g.,
𝑃thres = 0.05 in this case). By doing this, SiWiS will effec-
tively eliminate interference from all WiFi devices located
0.6 meters away.

2.6.2 Interference from Non-WiFi devices. If its excitation
signal is not from a WiFi device, SiWiS can easily identify
it based on its mixer output signal. As an example, we use
Bluetooth to generate the excitation signal for SiWiS. The
Bluetooth device is positioned 0.1 meters from SiWiS. Fig. 12
shows SiWiS’ mixer output. Comparing to Fig. 7 (WiFi ex-
citation), we can see that the mixer output signal is more
than 20 dB weaker and lacks the L-STF and L-LTF signatures
when the excitation signal originates from Bluetooth. These
differences allow SiWiS to easily identify and then exclude
the interference from non-WiFi devices.

3 HUMAN ACTIVITY RECOGNITION

3.1 Overview

SiWiS focuses on human activity recognition as a use case
for our proposed sensing approach. Due to the complexity of
RF sensing, DNNs have become mainstream for human de-
tection [49, 50, 60, 72–74, 77]. Traditional signal-processing-
based feature extraction is ineffective for complex human
detection tasks because of the intricate nature of RF environ-
ments. However, DNNs can develop robust feature extractors
for sensing signals through supervised learning. Further-
more, compared to “signal processing + DNN” approaches,
end-to-end DNN solutions require only a few extra parame-
ters but have the potential to enhance the performance [6].
Therefore, we employ an end-to-end DNN for this task.

SiWiS employs a cross-modal supervision approach for
DNN training, transferring knowledge from vision-based
human recognition models to WiFi-based models. At high
level, it comprises two components: vision processing and
signal processing, as shown in Fig. 13. During the training
stage, we use both video frames and WiFi-based sensing
signals, aligning them by their timestamps. In the inference
stage, we rely solely on WiFi-based sensing signals.

3.2 Deep Neural Network Framework

3.2.1 Signal Encoder. For the input WiFi-based sensing sig-
nals, we first apply convolution layers to extract temporal
features. To enhance the model’s ability of capturing feature
correlations over time, we employ self-attention blocks for
processing longer periods of sensing signals. Additionally,
to reduce computational costs, we modify the self-attention
block using a bottleneck design. Preceding and following
the self-attention block, we integrate two fully connected
layers for dimension reduction and subsequent expansion,
respectively. We then employ parameter-free identity short-
cuts to connect the inputs and outputs of the module. With
a reduction scale of 𝑋 for the fully connected layers, the
module’s parameter amount is also reduced by a factor of 𝑋 ,
significantly accelerating the model’s training speed.

3.2.2 Mask Segmentation and Pose EstimationDecoder. Given
that the supervisory signals for our model are heatmaps gen-
erated by the vision process network, it is necessary to up-
sample the sensing signal features to match the dimensions
of the heatmap features. Each WiFi signal feature obtained
from the signal encoder has a dimension of 𝐶 × 1 × 1, where
𝐶 represents the number of channels. Then, we introduce
a cross-attention block designed to produce feature maps
with dimensions of 𝐶 × ℎ × 𝑤 . Specifically, we initialize
ℎ×𝑤 trainable pixel embeddings and employ cross-attention
to compute the attention weights of each pixel embedding
towards each sensing signal feature. Subsequently, we em-
ploy convolutional and upsampling layers to increase the
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Figure 13: Deep neural network framework of our human activity recognition system. The framework consists of
two components: vision processing and signal processing. In the vision process, we employ vision models to extract
keypoint labels and mask labels from video frames, serving as the ground truth for supervised learning. In the
signal process, we predict mask segmentation and pose estimation heatmaps fromWiFi-based sensing signals.

feature map size from ℎ × 𝑤 to ℎ′ × 𝑤 ′, aligning with the
dimensions of the ground truth heatmap features. To reduce
computational costs, our convolutional layer uses a bottle-
neck residual block from ResNet [16], which utilizes 1 × 1
convolutions to reduce feature channels and consequently
decrease the module’s parameters.

3.2.3 Loss Functions. For the task of body part mask seg-
mentation, we initially employed the binary cross-entropy
(BCE) loss [15, 30, 38]. However, we encountered limitations
with BCE loss in practical applications. This was primarily
due to instances where the subject was distant from the cam-
era, resulting in the segmentation area occupying only a few
pixels in the image. Consequently, this led to a class imbal-
ance between foreground and background pixels. To address
this issue, we integrated the Dice loss. The formulation of
our mask segmentation loss function is expressed as follows:

L𝑚𝑎𝑠𝑘 = 𝛼1

𝑁∑
𝑖=1

(
𝑦𝑖 log𝑥𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑥𝑖 )

)

+ 𝛼2

(
1 − 2

∑𝑁
𝑖=1 𝑥𝑖𝑦𝑖∑𝑁

𝑖=1 𝑥
2
𝑖 +

∑𝑁
𝑖=1 𝑦

2
𝑖

)
,

(12)

where 𝑥𝑖 represents the predicted value, and 𝑦𝑖 is the real
class label. 𝑁 is the number of pixels. 𝛼1 and 𝛼2 denote scalar
weights utilized to balance the two losses. Fig. 14 illustrates
the mask segmentation outcomes w/ and w/o the integration
of Dice loss. It is evident that the integration of Dice loss can
significant improve the detection accuracy.

RGB image w/o Dice Loss w/ Dice Loss

Figure 14: Dice loss improves mask segmentation. Left:
RGB image; Middle: results w/o Dice loss; Right: results
w/ Dice loss.

RGB image w/o weighted MSE w/ weighted MSE

Figure 15: Weighted MSE loss improves pose estima-
tion. Left: RGB image; Middle: results w/o weighted
MSE loss; Right: results w/ weighted MSE loss.

For pose estimation, we utilize Mean Squared Error (MSE)
loss [8, 11, 35, 42, 51, 55]. Since human keypoints typically
occupy very few pixels in the image [50], applying MSE loss
with an average regression error over all pixels may exces-
sively emphasize background regions in the loss function.
Hence, we adopt a weighted MSE loss, assigning greater im-
portance to pixels closer to the keypoints. For multi-person
pose estimation, previous studies [9, 22, 33] have shown that
employing associative embedding can effectively address
grouping issues with high accuracy. Following the approach
outlined in [33], we use L𝑔𝑟𝑜𝑢𝑝 for keypoint grouping. This
grouping process organizes identity-free keypoints into in-
dividuals by grouping keypoints with smaller ℓ2 distances
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Figure 16: Prototype of SiWiS on a TP-LinkWiFi router.

between their tags. The expression of our pose estimation
loss function is as follows:

L𝑝𝑜𝑠𝑒 = (𝑦 + 1)	 ‖ 𝑦 − 𝑦 ‖22 + L𝑔𝑟𝑜𝑢𝑝 , (13)

where 𝑦 and 𝑦 represent the prediction and ground truth
heatmaps, respectively, and 	 denotes element-wise multi-
plication. Fig. 15 illustrates the pose estimation outcomes
w/ and w/o the integration of weighted MSE loss. It is evi-
dent that the integration of weighted MSE loss is an effective
approach to improve the detection accuracy.
The overall loss function for our training process is the

weighted sum of the mask segmentation loss and pose esti-
mation loss:

L = L𝑚𝑎𝑠𝑘 + 𝜆L𝑝𝑜𝑠𝑒 , (14)

where 𝜆 is a scalar weight used to balance the two losses.

4 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments with the
aim of answering the following questions.

• Q1 (§4.4): How does SiWiS perform when compared to
the SOTA in multi-person detection?

• Q2 (§4.5): How does the parameters (e.g., signal duration
and distance) affect the performance of SiWiS?

• Q3 (§4.6): How does SiWiS perform when compared to
the SOTA in unseen scenarios?

4.1 Implementation

We have built a prototype of SiWiS on a TP-Link 802.11ac
WiFi router as shown in Fig. 16 to evaluate its performance
in realistic scenarios.

4.1.1 Hardware. The RF hardware comprises a small dipole
antenna (RX0), four patch antennas (RX1-4), an RF switch,
a custom-designed RF PCB, an ADC daughterboard, and an
ECLYPSE Z7 FPGA board. The RF PCB was designed using
Analog Device’s HMC951A (mixer) and HMC717A (LNA).

Table 1: Statistical information of dataset. “Person #”
is the number of individuals present simultaneously
within a scene. “Frame #” is the number of video frames.

Person # 1 2 3 4 Total

Frame # 130,244 161,986 155,088 63,576 510,894

Figure 17: Different environments in the dataset.

It was fabricated using OSH Park substrate FR408. The four
patch antennas were simulated using HFSS and fabricated
on Rogers RO4350B. The FPGA controls the RF switch and
the ADC daughterboard for signal sampling at 10 MSps. The
FPGA sends the sampled data to a laptop via Ethernet for
signal processing. The TP-linkWiFi router works on channel
44. A web camera was installed on the system to capture
images for DNN training.

4.1.2 Software. Our network is implemented using PyTorch.
The input to the network consists of signals received from
four antennas. Both the mask segmentation and pose estima-
tion modules produce heatmaps with a resolution of 48 × 64.
For L𝑝𝑜𝑠𝑒 , the associative embedding loss is weighted by
a factor of 1e−3 relative to the MSE loss of the keypoint
detection heatmaps. Training is conducted on eight V100
GPUs (32GB memory), with a learning rate of 1e−3.

4.2 Data and Annotations

For data collection, a web camera was used to capture video
frames at 10 FPS. We synchronized WiFi-based sensing sig-
nals and video frames using the timestamps recorded during
signal acquisition. The number of individuals present in the
video varied from 1 to 4, and no restrictions were imposed on
subjects’ poses or positions. Participants were free to move
around and perform any actions in front of the device.
To evaluate our system, we collected data in 12 different

scenes around a university campus, as shown in Fig. 17. In
the experiments, our dataset was sorted according to the
timestamps recorded during collection. We allocated the
first 80% of the data for training and the remaining 20% for
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Table 2: Evaluation Performance of Mask Segmentation and Pose Estimation. All metrics are the higher the better.

Setting
Mask Segmentation Pose Estimation

mAP↑ AP@50↑ AP@60↑ AP@70↑ AP@80↑ mAP↑ AP@50↑ AP@60↑ AP@70↑ AP@80↑

Person-in-WiFi [50] Two 3-Ant WiFi Devices 0.3800 0.9100 0.7500 0.4000 0.0700 - - - - -

SiWiS Single WiFi Device 0.4805 0.9452 0.8628 0.5765 0.1055 0.3469 0.8423 0.6595 0.3626 0.0816

RGB image

Our method

Mask RCNN

Our method

HRNet

Figure 18: Mask Segmentation and Pose Estimation Results on different activities and environments.

testing. The samples in training set and test set are different
in locomotion and body poses, but share the same person
identities and environments. Detailed dataset statistics are
provided in Table 1. The amount of training/test samples are
408,715 and 102,179, respectively.

To provide supervision for the WiFi-based sensing signals,
we extracted mask segmentation and pose annotations from
each video frame. We use Mask RCNN [15] to obtain body
part mask segmentation and HRNet [42] to extract person
keypoints. These methods are widely used as baselines in
the fields of segmentation and pose estimation, respectively.

4.3 Evaluation Metrics

4.3.1 Mask Segmentation. We evaluate mask segmentation
using the Intersection over Union (IoU) metric [15, 50], de-
fined as:

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝑆𝑝 ∩ 𝑆𝑔𝑡 )
𝑎𝑟𝑒𝑎(𝑆𝑝 ∪ 𝑆𝑔𝑡 )

(15)

where 𝑆𝑝 ∩ 𝑆𝑔𝑡 is the intersection and 𝑆𝑝 ∪ 𝑆𝑔𝑡 is the union
of the predicted and ground truth masks. We calculate the
average precision (AP) at a given IoU threshold 𝑎 as 𝐴𝑃@𝑎=
𝑃𝑟𝑜𝑏 (𝐼𝑜𝑈≥𝑎) and𝑚𝐴𝑃 = 0.1

∑9
𝑖=0𝐴𝑃@(0.5 + 0.05𝑖).

4.3.2 Pose Estimation. The standard pose estimation metric
is based on Object Keypoint Similarity (OKS) 2 [42, 55]:

𝑂𝐾𝑆 =

∑
𝑖 exp(−𝑑2𝑖 /2𝑠2𝑘2𝑖 )𝛿 (𝑣𝑖 > 0)∑

𝑖 𝛿 (𝑣𝑖 > 0) , (16)

where 𝑑𝑖 is the Euclidean distance between detected key-
points and ground truth, 𝑣𝑖 is the visibility flag, 𝑠 is the object
scale, and 𝑘𝑖 is a per-keypoint constant that controls falloff.
AP is calculated at a given OKS threshold 𝑎 as 𝐴𝑃@𝑎 =
𝑃𝑟𝑜𝑏 (𝑂𝐾𝑆 ≥ 𝑎) and𝑚𝐴𝑃 = 0.1

∑9
𝑖=0𝐴𝑃@(0.5 + 0.05𝑖).

For single-person pose estimation, we use the Percentage
of Correct Keypoints (PCK) metric, following [49, 60, 77]:

𝑃𝐶𝐾@𝑎 =
1

𝑁

𝑁∑
𝑖=1

I( ‖ 𝑝𝑑𝑖 − 𝑔𝑡𝑖 ‖22√
𝑟𝑠2 + 𝑙ℎ2

≤ 𝑎) , (17)

where 𝑁 is the number of joints, and I is an indicator func-
tion. 𝑟𝑠 and 𝑙ℎ represents the positions of the right shoulder
and left hip, respectively. 𝑝𝑑𝑖 and 𝑔𝑡𝑖 are the predicted and

ground-truth coordinates. The term
√
𝑟𝑠2 + 𝑙ℎ2 serves as a

normalization factor based on the upper limb length, used
to normalize the prediction error ‖ 𝑝𝑑𝑖 − 𝑔𝑡𝑖 ‖22.
2https://cocodataset.org/#keypoints-eval
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Figure 19: Example of failure cases. SiWiS cannot effectively handle issues related to overlapping of human bodies.

4.4 Human Detection Accuracy

We compare SiWiS with Person-in-WiFi [50], the current
state-of-the-art WiFi-based approach for multi-person 2D
pose estimation. The experimental results are shown in Ta-
ble 2. In the mask segmentation task, SiWiS outperforms
Person-in-WiFi on all metrics, achieving a 10-point increase
in mAP. Additionally, we also provide the evaluation results
of pose estimation. In the table, the high values of AP@50
and AP@60 indicate that SiWiS can accurately detect per-
son profiles. Notably, there was a significant performance
degradation between AP@70 and AP@80, with a decrease
in accuracy of 0.4710 for mask segmentation and 0.2810 for
pose estimation. This issue may potentially be alleviated by
adding more patch antennas to SiWiS.

Finally, we present several test results to offer a qualitative
perspective on our system’s effectiveness. Fig. 18 displays
mask segmentation and pose estimation samples from our
test dataset, comparing them with corresponding RGB im-
ages and the results obtained using Mask RCNN [15] and
HRNet [42]. The results demonstrate the robust performance
of SiWiS across different environments with varying activi-
ties. Additionally, we showcase some failure cases in Fig. 19,
highlighting instances where errors occur in SiWiS due to
overlapping of human bodies. SiWiS struggles to distinguish
these cases due to the low spatial resolution caused by the
limited number of antennas.

4.5 Performance Analysis

We now analyze several key factors influencing system per-
formance and provide detailed performance of SiWiS under
various conditions.

4.5.1 Signal Duration. Within a short time interval, SiWiS
may not capture radio signals reflected by certain body parts,
potentially leading to de-emphasized or missing key infor-
mation [72]. To mitigate this, we experimented with longer
sequences of signal frames. We varied the input sequence
length in our experiments to evaluate SiWiS’s performance.
As shown in Fig. 20, the average precision is poor when using
signal frames from only 0.1 seconds, and it improves as se-
quence length increases. The rate of improvement gradually
slows down when the signal duration exceeds 1.7 seconds.

Figure 20: Impact of varying signal durations on the
performance of our system.

Figure 21: Impact of varying distance on the perfor-
mance of our system.

4.5.2 Detection Distance. The reflective signals received by
SiWiS become weaker as the object distance increases. Ad-
ditionally, phenomena such as reflection and refraction can
cause interference to SiWiS, and multi-path issues become
more pronounced at greater distances. To assess SiWiS’ per-
formance at different distances, we conducted additional
experiments. Specifically, we instructed a subject to move
parallel to the device at fixed distances, collectingWiFi-based
sensing signals and corresponding video frames at distances
of 2m, 3m, 4m, 5m, and 6m. As shown in Fig. 21, the average
precision rapidly decreases as the distance increases.

4.6 Zero-shot Performance

Different environments exhibit different radio propagation
characteristics. Human pose estimation methods [37, 49, 50,
60, 77] based on WiFi CSI have faced challenges in gener-
alizing models to new environmental settings. These meth-
ods are typically confined to fixed settings and are not di-
rectly adaptable to new (unseen or untrained) environments,



ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Song, et al.

Figure 22: Left: SiWiS’ zero-shot performance in five
different unseen scenes. Right: Zero-shot comparison
between SiWiS and other WiFi-based methods.

significantly limiting the widespread applicability of WiFi
CSI-based sensing approaches. SiWiS, by achieving phase-
coherent sensing through hardware innovation, fundamen-
tally reduces the influence of surrounding environments on
the WiFi signals reflected from targets. In what follows, we
conducted experiments to evaluate the generalization capa-
bility of SiWiS in unseen scenes.

4.6.1 Dataset. To ensure a fair comparison with previous
WiFi-based single-person pose estimation methods [77], we
invited subjects to perform daily activities, such as raising
arms, kicking legs, and squatting, within 2.5 meters of the de-
vice. Additionally, we further collected data in five different
scenes, comprising three indoor and two outdoor settings.
During experimentation, we alternately selected three of
these scenes as the training set and the remaining two as
the unseen test set. Consequently, each scene was evaluated
twice as the test set.

4.6.2 Performance. We report the mean of twice evaluations
as the final result for each scenario, as shown on the left side
of Fig. 22. Across five different scenes, the mAP scores for
mask segmentation are relatively consistent, while the scores
for pose estimation vary significantly. In outdoor scenes A
and D, the mAP scores for pose estimation are both around
0.2, considerably lower than those in indoor scenes.

Furthermore, we compare our work with WiFi CSI-based
single-person pose estimation methods [49, 60, 77]. The ex-
perimental results are shown on the right side of Fig. 22.
Evidently, SiWiS significantly surpasses them under zero-
shot conditions. The results confirm the exceptional domain
transfer capability of SiWiS, addressing the current challenge
of WiFi CSI-based sensing methods being unable to adapt
to new environments. This opens up possibilities for the
widespread application of WiFi Sensing technology. Finally,
we present some zero-shot results in each of the five scenes,
as shown in Fig. 23.

5 LIMITATIONS AND DISCUSSIONS

In this section, we outline SiWiS’ limitations and discuss
possible solutions.

RGB image Our method Our method

Figure 23: Zero-shot performance on different activi-
ties and environments.

Specialized Hardware: SiWiS requires the installation of
a specialized RF circuit and additional antennas on a WiFi
device to realize its radar-like sensing capability. This is a
drawback compared to CSI-based sensing methods. To en-
hance the applicability of SiWiS, the specialized RF circuit
could be integrated into the WiFi device’s motherboard. Ad-
ditionally, patch antennas can be fabricated using flexible
substrate materials, which can be easily attached to the sur-
face of WiFi devices.
Computational Complexity: SiWiS relies on a dual-branch
DNN to infer human activities based on sensing signals. This
learning-based approach has higher computational complex-
ity compared to model-based approaches, which constitutes
another drawback of SiWiS. To address this issue, SiWiS
could outsource the DNN inference task to a cloud AI server
by leveraging the Internet access of its host WiFi device.
Nowadays, the Internet bandwidth of most WiFi devices is
more than sufficient for this outsourcing.
Static Objects: Like a Doppler radar, SiWiS can only de-
tect moving objects and cannot detect static objects. This
is a limitation of SiWiS. However, in practice, people are
rarely completely static, even when sleeping. We note that
SiWiS has sub-centimeter sensitivity for detecting object
movements. With such high sensitivity, SiWiS can detect
individuals even if they are sitting or lying down, due to
their subtle movements.
Coexistence of Multiple SiWiS: Consider the case where
multiple WiFi devices are in the same area and every WiFi
device is equipped with SiWiS for sensing. It is noteworthy
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that all SiWiS devices will function properly in this case.
This is because, as we explained in §2.6, SiWiS is active for
sensing if and only if its host WiFi device is transmitting.
See ThroughWalls: Since WiFi signals are capable of pene-
trating walls, SiWiS has a great potential to see human activ-
ities through walls. The challenge lies in the video data col-
lection for DNN training, as the camera cannot see through
walls to collect supervisory data. We leave it for future work.
Antenna Number: In this work, SiWiS uses four antennas
for sensing, considering the physical size of a WiFi router. It
is interesting to study the impact of its antennas by exam-
ining the relationship between the number of antennas and
the maximum number of recognizable individuals. This is a
nontrivial problem and will be studied in our future work.

6 RELATED WORK

Computer Vision: In the field of computer vision, the task
of human pose estimation [76] primarily involves estimat-
ing the coordinates of human body keypoints from images
or videos. Earlier methods [34, 42, 44, 51, 64] mainly uti-
lized CNNs for feature extraction. HRNet [42] proposed a
high-resolution DNN model, which comprises parallel high-
to-low resolution subnetworks. Recently, inspired by the
Vision Transformers (ViT) [10], the field of human pose es-
timation has rapidly evolved from CNN-based networks to
ViT networks [26, 27, 45, 63, 66]. HRFormer [66] builds on
the foundation of HRNet, segmenting different resolution
representation maps into non-overlapping small image win-
dows. ViTPose [55] directly utilized ViT as its backbone
and demonstrated that even simple network structures can
achieve impressive results.
Radar Sensing: Radar sensing offer significant advan-

tages in environmental perception and find widespread ap-
plications in daily life [54]. Compared to other wireless sig-
nals, radar has stronger anti-environmental interference and
fine-grained perceptual information. Indoor positioning rep-
resents a crucial aspect of radar research, with early methods
[2, 3] aiming to achieve precise indoor human body posi-
tioning using radar. Subsequently, the RF Capture system [1]
was introduced, enabling the tracking of a person’s 3D limb
and body part positions through walls. This system laid a
foundation for subsequent human body posture estimation
techniques. The rapid advancement of perception technology
and deep learning based on radar has facilitated the devel-
opment of numerous applications, including sleep detection
[68, 75], gesture recognition [21, 28, 31, 41, 43], radar imag-
ing [1, 2, 5], physiological feature monitoring [4, 7, 29, 67],
and object tracking [12, 18, 19].

WiFi Sensing: Benefiting from the advancements in deep
learning, an increasing number of studies [57] have con-
structed various DNN-based WiFi sensing applications, such
as human activity recognition [23, 32, 39, 40, 53, 56, 65, 78,

80], human identification [13, 48, 58, 59, 61, 69] and ges-
ture recognition [14, 24, 47, 52, 62, 69–71, 79]. For instance,
DeepSense [80] employs CNN modules and LSTM [17] mod-
ules to automatically identify common activities. THAT [23]
studied time-over-channel features and proposed using a
multi-scale convolution augmented transformer to capture
range-based patterns. Widar [71] suggests the use of a body-
coordinate velocity profile, which describes the power distri-
bution over different velocities to track human motion.

Compared to the tasks mentioned above, pose estimation
presents grander challenges due to the need for fine-grained
prediction of multiple keypoints. Most existing WiFi Sensing
methods for pose estimation utilize WiFi CSI as the input
signal. WiSPPN [49] employs a setup with three antennas for
both the WiFi sender and receiver, generating WiFi signals
for estimating human poses. Building on this, Person-in-WiFi
[50] introduces a multi-task learning approach, mapping
WiFi signals to human body segmentation masks and joint
coordinates. GoPose [37] used non-linearly spaced antennas
on the WiFi device to expand 1D AoA estimation to 2D
AoA framework. AdaPose [77] proposed the use of mapping
consistency loss to tackle the challenges in cross-domain
WiFi-based human pose estimation.

SiWiS advances the state-of-the-art by enabling phase-

coherent sensing on a single WiFi device. It achieves a signif-
icant improvement on human detection accuracy and direct
transferability in unseen environments.

7 CONCLUSION

In this paper, we presented SiWiS, an indoor human sens-
ing system using a single WiFi device. SiWiS comprises two
novel components: RF sensing hardware and dual-branch
DNN model. Our hardware design enables a single WiFi
device to detect the object movement by utilizing ambient
WiFi OFDM signals. It achieves phase-coherent sensing by
establishing a deterministic relation between the observed
signal phase and the object movement distance. Our dual-
branch DNN model was highly optimized for joint human
pose estimation and mask segmentation. Extensive experi-
mental results demonstrate a significant improvement of Si-
WiS compared to existing CSI-based sensing methods. More
importantly, zero-shot experiments confirm that SiWiS can
be effectively used in unseen real-world environments, ad-
dressing a fundamental challenge (transferability) in WiFi
sensing.
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