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Abstract
Eye motion tracking plays a vital role in many applications such
as human-computer interaction (HCI), virtual reality, and disease
detection. Camera-based eye tracking, albeit accurate and easy
to use, may raise privacy concerns and appear to be unreliable
in poor lighting conditions. In this paper, we present RadEye, a
radar system capable of detecting fine-grained human eye motions
from a distance. RadEye is realized through an integrated hardware
and software design. It customizes a sub-6GHz FMCW radar so
as to detect millimeter-level eye movement while extending its
detection range using low frequency. It further employs a deep
neural network (DNN) to refine the detection accuracy through
camera-guided supervisory training. We have built a prototype of
RadEye. Extensive experimental results show that it achieves 90%
accuracy when detecting human eye rotation directions (up, down,
left, and right) in various scenarios.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI); • Hardware → Printed circuit boards.
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1 Introduction
Eyemotion tracking hasmany applications. As per theAmyotrophic
Lateral Sclerosis (ALS) Association, more than 5,000 people in the
U.S. are diagnosed with ALS every year [1]. Individuals with ALS
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Figure 1: Illustration of RadEye.

lose control of their muscles and thus cannot move, speak, eat,
and breathe [28]. Eye movements become their only method to
convey messages for communications [2]. A non-intrusive, privacy-
preserving eye tracking system can better understand their convey-
ing messages and help them achieve efficient communications. In
addition to assisting individuals with disabilities, eye motion track-
ing can serve as an effective human-computer interaction (HCI)
tool in various scenarios. For example, it can help immobile patients
communicate, as illustrated in Fig. 1. It can also be used to remotely
control devices such as smart TVs, home appliances, elevators, and
virtual reality systems. Furthermore, a reliable eye-tracking system
has broader applications in healthcare, including psychology re-
search [25], marketing analysis [44], and early disease detection
[31].

Existing contactless eye tracking solutions employ various sen-
sors, including cameras, acoustic, and radar. While cameras have
demonstrated high accuracy in eye motion detection [10, 33], their
application may pose privacy concerns in some scenarios. Addi-
tionally, cameras do not perform well in poor lighting conditions.
Recently, acoustic signals have been studied for eye tracking on
smartphones [5, 22]. However, due to the propagation nature of
sounds, acoustic-based eye tracking systems are limited to eye blink
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detection within a small distance. Millimeter-wave (mmWave) radio
frequency (RF) radar has also been studied for facial recognition and
eye blink detection (e.g., [13, 46]). While mmWave radar can achieve
mm-level motion detection, its detection range is very limited due
to its small wavelength. Additionally, existing mmWave-based sens-
ing work focuses mainly on eye blink detection rather than eye
motion tracking. Low-frequency radio signals have been widely
leveraged for fine-grained human activity recognition (HAR), such
as Wi-Fi sensing [9, 15, 19, 20, 36, 37], RFID sensing [35, 43], and
4G/5G sensing [7, 40]. However, due to their large wavelength as
well as their non-coherent sensing approaches, those systems may
not be able to detect such subtle eye motions. So far, there is no
RF-based system that can track human eye motions from a distance.

In this paper, we present RadEye, an RF sensing system that can
track eye motions from a distance. Compared to camera-based eye
tracking, RadEye not only mitigates privacy concerns but also per-
forms reliably in poor lighting conditions. The privacy-preserving
nature of RF signals stems from their inherent characteristics. Un-
like camera images, RF signals are not visually interpretable by
humans and inherently possess low spatial resolution. As a result,
they are unlikely to reveal detailed, identifiable features of indi-
viduals. Extracting personal information from RF signals involves
complex processes that require advanced signal processing and
AI models, making misuse significantly less accessible compared
to camera systems. Furthermore, RF sensing systems are typically
designed to capture only coarse-grained human activities—such as
presence, movement, or positioning—rather than detailed personal
characteristics like facial features or voice. This makes RF-based
sensing systems inherently more privacy-preserving than cameras,
ensuring better protection of individual privacy.

Compared to acoustic- and mmWave-based eye detection ap-
proaches, RadEye extends both the RF sensing capability (from eye
blink to eye motion) and detection range (from less than 1 m to
more than 5 m). We note that the eye motion tracking task is very
different from eye blink detection. The former is a regression prob-
lem, while the latter is a binary classification problem. Such an
extension will significantly enlarge RadEye’s application landscape
in real life.

In the design of RadEye, we face two challenges. Challenge
#1: subtle eye movement and long detection range. On one
hand, eye rotation, encompassing eyelid and eye muscle displace-
ment, involves movement around 1 mm [18]. Such a subtle motion
makes it hard to detect for an RF system. On the other hand, an
eye-tracking sensor may be used in indoor or outdoor scenarios.
The eye detection distance varies significantly, ranging from 0.5 m
(e.g., from smartphone to eyes) to 5 m (e.g., from smart TV to eyes).
Devising an RF system that can detect subtle (mm-level) eyeball ro-
tation movement from a distance is not a trivial task.Challenge #2:
interference mitigation by design. An eye-tracking system may
suffer from interference from three sources: i) multipath from the
target person to the RF sensor, ii) the movement of the target per-
son’s other body parts such as chest breathing, arm waving, and
leg shaking, and iii) other moving objects/people in the area. For
instance, when the RF sensor detects eye movement, another per-
son may walk around in the same room, generating interference
to the received signals at the RF sensor. In general, interference is
a notorious problem for RF sensing. Given the subtlety of eyeball

Table 1: Comparison of RadEye and existing eye detection
works.

Reference Technique Max.
distance

Track eye
motion

Work in
low light

Blink Listener [22] Acoustic 0.8 m ✗ ✓

TwinkleTwinkle [5] Acoustic 0.6 m ✗ ✓

BlinkRadar [13] IR-UWB 0.8 m ✗ ✓

X. Zhang [47] mmWave 1.2 m ✗ ✓

C. Ryan [27] Event Camera 0.6 m ✓ ✗

GazeRecorder [10] Web Camera 0.7 m ✓ ✗

RadEye Sub-6GHz FMCW Radar 5 m ✓ ✓

movement, the interference must be mitigated by design so as to
accurately detect eye’s movement.

RadEye addresses the above two challenges through a joint hard-
ware and software design. To achieve the required detection resolu-
tion and range (i.e., Challenge #1), we design and optimize a 5 GHz
FMCW radar for eye movement tracking. We choose 5 GHz radar
for two reasons: i) high-frequency radio wave (e.g., mmWave) is
suited for detecting tiny motions, but has a small detection range;
and ii) low-frequency radio wave is suited for long detection, but not
suited for detecting subtle movement. A tradeoff between detection
resolution and range leads to our selection of 5 GHz frequency band.
Additionally, the market has rich electronic devices (e.g., power
amplifiers, mixers, and low noise amplifiers) at 5 GHz frequency
bands due to the maturity of Wi-Fi industry. Thus, it is cost-friendly
to build 5 GHz radars. To mitigate interference from multipath and
other moving objects (i.e., Challenge #2), we combine four tech-
niques: i) FMCWmodulation for the 5 GHz radar, ii) a sophisticated
signal processing pipeline for eye-related feature extraction, iii)
a transformer-based deep neural network (DNN) for eye motion
detection, and iv) a camera-guided supervisory training method
for the DNN model. Together, these four techniques make RadEye
capable of separating the eye motion features from the interference
frommultipath and other objects. More importantly, these four tech-
niques make RadEye transferable to unseen scenarios, enhancing
its generalizability in practice.

We have built a prototype of RadEye and evaluated its perfor-
mance in multiple scenarios. Experimental results show that, for
a person at a 5 m distance, the average estimation error of eye
rotation is 24 degrees in azimuth and 21 degrees in elevation. By
formulating the eye rotation problem to a classification (up, down,
left, and right) problem, RadEye achieves 90% accuracy. Extensive
results confirm the generalizability of RadEye in unseen scenarios
as well as its resilience to interference.

Table 1 shows how RadEye advances the state-of-the-art (SOTA)
RF sensing technology. The main contributions of RadEye are sum-
marized as follows:
• To the best of our knowledge, RadEye is the first-of-its-kind
system that utilizes RF signals to estimate eye rotation angles
from a distance.

• RadEye presents a joint hardware and software scheme for subtle
eye motion detection in the presence of interference.

• Extensive experimental results validate the performance, robust-
ness, and generalizability of RadEye.
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Figure 2: Illustration of FMCW signal.

2 RadEye: Design Analysis
2.1 Background
RadEye leverages the FMCW signal to detect the eye motions. The
signal is transmitted from the radar’s TX antenna towards the eyes;
and the reflective signal from the eyes is received by the radar’s
RX antenna. The difference between the transmitted and received
signal is used to extract the eye motion features. As shown in Fig. 2,
the FMCW signal starts from frequency 𝑓0 and ramps up linearly
over time 𝑇 . The transmitted signal can be written as:

𝑆𝑇 (𝑡) = 𝑒− 𝑗2𝜋 (𝑓0𝑡+ 𝐵
2𝑇 𝑡2 ) . (1)

The received signal reflected from the target can be written as:

𝑆𝑅 (𝑡) = 𝛼𝑒− 𝑗2𝜋 (𝑓0 (𝑡−𝜏 )+ 𝐵
2𝑇 (𝑡−𝜏 )2 ) . (2)

The transmitted and received signals are mixed together, leading
to an immediate frequency (IF) signal as follows:

𝑆𝑀 (𝑡) = 𝑆𝑇 (𝑡)𝑆𝑅 (𝑡)∗ = 𝛼𝑒− 𝑗2𝜋 (𝑓0𝜏+ 𝐵
𝑇
𝜏𝑡− 𝐵

2𝑇 𝜏2 ) . (3)

RadEye uses the IF signal to infer the eye motions. As we can
see from the Eqn. 3, both the frequency and phase of the IF signal
are proportional to the delay of the signal. The frequency of the IF
signal 𝑓𝑚 = 𝐵

𝑇
𝜏 . The time delay can be calculated as 𝜏 =

𝑓𝑚𝑇

𝐵
and,

as a result, the distance can be calculated by 𝑑 = 𝑐𝜏
2 =

𝑐 𝑓𝑚𝑇

2𝐵 .
To separate the signal reflected from different objects, we do

range-FFT on each chirp of the IF signal, as illustrated in Fig. 2. Each
range bin represents the signal coming from different distances. The
range resolution Δ𝑑 = 𝑐

2𝐵 is determined only by the bandwidth of
the signal. To identify the FFT bin corresponding to eye motions, a
user will be asked to blink his/her eye as a reference. The algorithm
will be presented in §3.

2.2 Detectability of Human Eye Rotation
The kinematics of eye rotation is a complex process involving the
stretching and contraction of six extraocularmuscles. The combined
movement of these muscles alters the shape of the reflection surface,
affecting the length of the signal reflection path and influencing
the phase shift of the FMCW signal. Additionally, these muscle
movements impact signal attenuation, as muscles and surrounding
tissues absorb and scatter FMCW signals to varying degrees based
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Figure 3: (a) The phase change of the corresponding FFT-
bin from the mmWave radar. (b) The phase change of the
corresponding FFT-bin from the RadEye.

on their density, composition, and position. When eye muscles
move, the spatial distribution of these tissues changes, altering the
amount of signal absorbed or scattered and leading to variations in
attenuation.

In addition to muscle movements, eyelid motion also affects
reflected FMCW signals. During eye rotations, the eyelids fold or
stretch, and this change in thickness modifies the distance of the
signal reflection path. Furthermore, eyelid movement alters the
size of the exposed area of the eyeball, further influencing the
attenuation of the reflected signal.

2.3 Feasibility Analysis
We conducted experiments to compare the performance of RadEye
with a 60 GHz FMCW mmWave radar (i.e., AWR6843 [32]), both
of which have 1.1 GHz bandwidth. Specifically, a participant per-
formed eye blinks at distances of 3 m, 4 m, and 5 m. Fig. 3 presents
our experimental measurements. The experimental results show
that mmWave radar can detect human eye blinks within a range of 3
meters. However, the detectability decreases rapidly as the distance
increases. In contrast, RadEye exhibits a consistent capability of
detecting human eye blinks at those three distances.

In some cases, the line-of-sight path from human eyes to the
radar device might be blocked. Thus, we conducted comparative
tests to evaluate the ability of two types of radars to track eye
movements under obstructed conditions. To simulate such cases,
we repeated the same test at a distance of 3 m but placed a wooden
door between the radar and the participant. As shown in Fig. 4,
RadEye is capable of detecting eye blinks even behind the door,
whereas the mmWave radar fails to do so. This limitation of the
mmWave radar can likely be attributed to the high attenuation of
mmWave signals. It is worth noting that these experiments were
conducted in the same environment and used an identical signal
processing pipeline. The detailed parameters of the two systems
are provided in Table 2.
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Figure 4: (a) RadEye tracking behind a wooden door. (b)
mmWave radar tracking behind a wooden door. (c) Phase
change of the corresponding FFT-bin from both systems.

Table 2: Detailed Parameters for the RadEye and mmWave
Radar.

aaaaaaaaaa
Parameters

Systems

RadEye AWR6843

Tx / Rx antenna gain 15 dBi 7 dBi
Transmission power 15 dBm 12 dBm

Chirp duration 600 𝜇𝑠 600 𝜇𝑠
Idle time 400 𝜇𝑠 400 𝜇𝑠
Bandwidth 1.1 GHz 1.1 GHz

Gain figure (Rx chain) – 48 dB
Noise figure (Rx chain) 7 dB 12 dB

Gain from baseband amplifier 8 dB –

Millimeter-Level Motion Detection. As we mentioned earlier,
the ranging resolution of an FMCW radar is not enough to detect
the tiny eye motion. However, the phase of the demodulated FMCW
signal can reflect the eye rotation motion. Eye rotation involves
eyelid and eye muscles displacement, which moves at millimeter
level [18]. Based on Eqn. (3), one-millimeter movement of eyeball
can cause a phase change of FMCW signal by: 2𝜋 𝑓0 2𝑑

𝑐 = 0.25 radian
(i.e., 14◦), which is easy to detect and measure on the corresponding
Range-FFT bin.

Resilience to Interference. An eye-tracking system may suffer
from interference from three sources: i) multipath from the target
person to the RF sensor, ii) the movement of the target person’s
other body parts such as chest breathing, arm waving, and leg shak-
ing, and iii) other moving objects/people in the area. To mitigate
such interference, RadEye employs wideband FMCW modulation
and high-optimized directional antennas. The FMCW modulation
with 1.1 GHz offers a ranging resolution of 14 cm, allowing RadEye
to distinguish objects separated by 14 cm. The FMCW modulation
can effectively filter out the interference from the target person’s
other body motions such as chest breathing. A custom-designed
patch antenna is used for signal transmission and reception, serving
as an angular filter for suppressing interference from other direc-
tions. As shown in Fig. 5, the patch antenna has a 3 dB beamwidth
of 21 degrees. In addition to the hardware design and optimization,
a transformer-based DNN, trained through a video-guided pipeline,
will be useful to focus on the desired features while eliminating the
interfering features through a self-attention mechanism.

21 degree (3dB beamwidth)

Figure 5: The custom-designed patch antennas (left) and their
gain pattern (right).
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Figure 6: The feature for eye rotations. (a) The signal ampli-
tude when eye rotates toward different directions. (b) The
signal in the complex domain when eye is rotating. (c) The
kernel density estimation of the signal amplitude variation
ratio. (d) The kernel density estimation of themotion pattern
eccentricity.

2.4 Feature Validation
We conducted a preliminary study of the sub-6GHz radar’s capabil-
ity for detecting eye motions. A participant was seated 3 m in front
of the radar and instructed to rotate his eyeballs in four different
directions (up, down, left, and right). Fig. 6(a) depicts the signal
amplitude from the corresponding Range-FFT bin during these eye
rotations. The “Ground truth” points in the figure were captured by
a camera with the SOTA computer vision-based eye detection algo-
rithm [17], marking the moment of real eye rotations. It is evident
that the eyeball rotations towards the four directions indeed induce
the amplitude change of the radar’s IF signal. This indicates that the
5 GHz FMCW radar is capable of capturing the eye motions. When
delving into eye rotation signals in different directions, we observe
that up/down movements exhibit a more substantial change com-
pared to left/right movements. This is not surprising, because the
eyelid of vertical actions has larger movements. Additionally, the
up-rolling of eyes results in an amplitude increase. This is because
the eyelid’s movement during the upward gaze involves more parts
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of the eyeball in reflection. The water-textured nature of the eyeball,
in contrast to the skin, enhances signal reflection. Given that the
different eye rotations cause different amplitude changes, we use
the amplitude variation ratio as one of the features for inference.

Features in Complex Domain. In addition to the observation
in the temporal domain, we further observe the IF signal in the
complex domain as shown in Fig. 6(b). For the eye motion signal
𝑆𝑒 from the corresponding Range-FFT Bin, it can be decomposed
into a static component 𝑆𝑠 and a dynamic component 𝑆𝑑 . They can
be written as:

𝑆𝑒 = 𝑆𝑑 + 𝑆𝑠 = 𝛼𝑑𝑒
𝜙𝑑 + 𝛼𝑠𝑒

𝜙𝑠 , (4)

where 𝛼𝑠 and 𝜙𝑠 are the amplitude and phase of the static com-
ponent. 𝛼𝑑 and 𝜙𝑑 are the amplitude and phase of the dynamic
component. As shown in Fig. 6(b), the curve shape of the dynamic
component in the complex domain is determined by both amplitude
and phase.

Different Eye Rotation Directions. For different directional
movements of the eyeball, the folding of the eyelid and the rota-
tion of the eyeball create a unique relative relationship, manifesting
through the changes in IF signal amplitude and phase. We character-
ize this feature by utilizing the curvature of the curve. Specifically,
we perform regression on the curve, identify an elliptical equation
[8], and use the eccentricity of the ellipse to characterize this feature.
As shown in Fig. 6(b), the ellipse generated by the up/down eye mo-
tions exhibits a more elongated shape, while the right/left motions
lead to a more circular shape. This can be attributed to the fact that
up/down eye motions involve more eyelid movements, leading to
changes in reflective surface, while left/right eye rotations mainly
cause changes in the length of the reflection path.

Experimental Validation. To verify the robustness of the am-
plitude and eccentricity features, we conduct experiments involving
five participants. We repeat the experiments in the same setting as
described above. Each participant performs his/her eye rotations
in each direction 50 times. Then, we perform the kernel density
estimation for all the participants. Fig. 6(c) presents the density
estimation results of amplitude changing ratio. The up and down
motions are centered on the 0.3 and -0.4, respectively. The left
and right motions have a relatively smaller variation; and they are
centered around zero. Fig. 6(d) shows the eccentricity density esti-
mation results. The up/down motions are centered close to 1; and
the left/right motions are close to 0.8. The statistical results across
different individuals align with the findings described earlier for
a single person. This consistency suggests the potential of segre-
gating these motions based on the radar’s signal. To enhance the
recognition of eye motions, we employ a DNN model, which will
be described in §4.

3 RadEye: Signal Processing
In this section, we describe the signal processing of the radar’s IF
signal for eye rotation detection. Fig. 7 shows the overall structure
of the system. In what follows, we introduce the signal processing
techniques for RadEye, which include the selection of the range bin
and the extraction of eye motions.

Range-FFT. RadEye sets the chirp duration to 1 ms for detecting
eye motions. In each cycle, the chirp takes 0.6 ms, and the delay
takes 0.4 ms. RadEye employs a sample rate of 2.5 MSps to observe
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DNN
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Figure 7: The system overview of RadEye.

the signal in the digital domain. Consequently, in each cycle, 1500
complex numbers are acquired. Subsequently, RadEye appends ze-
ros to the end of the samples and performs a 4096-point range-FFT
operation to obtain the signal at different ranges. In the 4096 bins,
only the first 256 will be used since it already covers the range to
13 m.

Filtering for Range-FFT. RadEye applies a second-order But-
terworth bandpass filter to suppress noise and out-of-band inter-
ference. It sets the filter’s pass band to 1 Hz∼5 Hz [46, 50]. We note
that, although the eye blink frequency may overlap with the chest
breathing frequency (0.1 Hz∼0.5 Hz), the input eye motion com-
mand for RadEye has a higher frequency and will not be affected by
the filter. One may ask whether the heartbeat will cause the slight
head shaking and thus pollute the eye motion signals, our answer
is no. Based on our experimental results, the heartbeat is too weak
to cause the head shaking that can be captured by RadEye.

FFT Bin Selection. Eye rotation motions have a very small
dynamic range. Therefore, it is nontrivial to find the FFT bin that
carries the eye motion features. To do so, RadEye requires users
to blink their eyes three times with an interval of 2 seconds as a
‘start button’ to initiate the control process. The user only needs to
provide the initialization command once. In this period, the users
should keep their head still (no movement more than 14 cm). If
the user’s head position moves beyond this range, the initialization
command must be re-entered. Since this is a human input device,
it is reasonable to require the user to remain relatively stationary
within a short time period. RadEye utilizes the amplitude dynamic
range as an indicator to find the candidate bin. The reason for using
the amplitude is that, when the eyes switch between opening and
closing, the blink motion causes the reflective surface to switch
from the water-textured eyeball to the skin-textured eyelid [22],
causing the amplitude change of the radar’s IF signal.

We describe the bin selection algorithm as follows. RadEye cal-
culates the window-slides variance for each Range-FFT bin 𝑖 by:
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Figure 8: (a) The signal amplitude variance for different Range-FFT bins during eye blinks. (b) Eye motion detected based on
signal phase (with the camera-based ground truth marked). (c) Comparison of Eye motions and interfering motions from the
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𝑣𝑖 ( 𝑗) = 1
𝑊

∑𝑗+𝑊 −1
𝑚=𝑗

( |𝑦𝑖 (𝑚) | −𝑦𝑖 )2, where 𝑦𝑖 = 1
𝑊

∑𝑗+𝑊 −1
𝑚=𝑗

|𝑦𝑖 (𝑚) |,
and 𝑤 is the window size which is set to 200 to fit the duration
of the eye blink. If 𝑣𝑖 ( 𝑗) is larger than a predefined threshold 𝑇 ,
the timestamp 𝑗 will be recorded as 𝑡𝑛 . Here, 𝑇 is empirically set
to 0.05. Only when the next detected timestamp 𝑗 satisfies the
2000 < 𝑗 − 𝑡𝑛 < 3000 (fit in the interval of blink), it will be counted
as the continuous blink. Once the three continuous blinks have
been detected, we mark the Range-FFT bin 𝑖 as the candidate bin.
Multiple Range-FFT bins might satisfy this condition as shown in
Fig. 8(a). In this case, RadEye chooses the bin that has the smallest
index. The smallest-index Range-FFT bin represents the shortest
path of signal travel, which best reflects the eye motion pattern.

Eye Motion Detection. After RadEye identifies the Range-FFT
bin, it will continue to monitor this bin and estimate eye motions
based on it. Each eye motion can be separated into three phases:
start moving the eyeball, the eyeball reaches the edge, and the
eyeball backs to the start position. RadEye tries to detect these
three positions for each eye motion. Although both amplitude and
phase contain information about eye motions, we found that phase
exhibits a more significant pattern when detecting eye rotations.

Eyeball rotations involve repetitive movement. It rolls back to its
central point when reaching the edge. This motion occurs swiftly,
resulting in a repetitive phase change pattern. Hence, the posi-
tions of local phase extremums correspond to where eye movement
reaches the edge. Additionally, we noticed that there are inflec-
tion points in the signal phase at the beginning and end of eye
movements. RadEye utilizes these features to extract eye motions,
it first searches for the local maximum/minimum on phase with
an interval of 1 second. After identifying the local peaks, RadEye
will search along the gradients of samples before/after the peak.
The position in which the gradient is equal to zero will be defined
as the start/end position. Fig. 8(b) presents the phase of the signal
when a participant repeats the look-up motion, and the detected
start, peak, and end positions are marked on the figure.

To mitigate interference from the target person’s other body
parts, we utilize both phase shift and time duration to refine the
detection results. Fig. 8(c) shows eye blinks, eye rotations, head
motions, and mouth motions. It can be seen that head and mouth
motions induce significant changes in the signal phase. Conse-
quently, if the phase shift surpasses a specified threshold, the signal
is discarded. For motions falling below the threshold, the time du-
ration is considered. Only signals within the duration range of

200 ms∼600 ms are deemed as valid eye motion signals. Doing so
will effectively filter out eye blinks, which typically last for less
than 100 ms.

4 RadEye: DNN-based Eye Movement Detection
In this section, we present a DNNmodel for eye rotation recognition
by using the amplitude and phase of the radar’s IF signal. RadEye
utilizes a transformer encoder to extract features and feeds these
features into a fully connected layer to output the azimuth and
elevation angles of a target person’s eyeball. The DNN is trained
using a camera-guided method, transferring the knowledge from
computer vision to radio sensing.

4.1 Sequential Signal
The input signal to our DNN model is a time-series signal with a
high sampling rate. As the subject’s eyeballs rotate toward different
angles, the swift motions of the eyeballs and eyelids cause fluctu-
ations in the amplitude and phase of the input signal over time.
Therefore, to accurately model the temporal dependencies between
various sampling points, we employ a DNN model that is capable
of efficiently encoding information over the temporal domain.

Traditional time-series models, such as Recurrent Neural Net-
work (RNN) [26] and LSTM [12], are capable of temporal sequence
modeling. However, they struggle with gradient vanishing and ex-
ploding problems when dealing with long sequence inputs, limiting
their capabilities of capturing dependencies over a long distance.
In contrast, Transformer [34], employing a self-attention mech-
anism, can effectively overcome these issues. The self-attention
mechanism allocates a weight to the output of each position in
a time series, reflecting the degree of attention that the position
pays to other positions within the sequence. This method allows for
the computation of correlations between any two positions in the
sequence without being constrained by their physical separation,
thus better capturing long-range dependencies. Furthermore, the
multi-head attention mechanism within Transformers can project
eye movement signals into various subspaces, including different
frequency spaces. Frequency analysis can better distinguish cer-
tain angle information, as the movement of the eyeball at different
angles will have different speeds.
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Figure 9: A camera-guided DNN structure for RadEye.

4.2 Camera-guided DNN Framework
The overall structure of our designed model, as shown in Fig. 9,
primarily utilizes Transformer to predict an angle vector based on
the input time-series data, which includes both the amplitude and
phase derived from the corresponding Range-FFT bin. We introduce
its key elements as follows.
• Input Data. The input data for the eye motion signal is captured
by RadEye from the corresponding Range-FFT bin. Each input
data sample consists of 200 × 2 dimensions, where 200 is the
time length of the data sample, and 2 is the number of features:
amplitude and phase. The data have been normalized to ensure
that they share the same dynamic range.

• Signal Encoder. Before sending to Transformer, the signal data
are first passed through a projection layer to up-sample them
to a higher-dimensional representation. The output size of this
projection layer is 200 × 64. Additionally, to enable the model
to discern the temporal relationships within the input sequence
embeddings, each signal representation is augmented with posi-
tional embeddings.

• Backbone. The transformer encoder can extract features from
the embedded data. RadEye uses two transformer encoders; and
each encoder has four heads. The self-attention mechanism in
the transformer encoder can build connections across different
time steps in the signal and also attend to different parts of
the signal. These connections enable the model to easily derive
information about the eye rotation angle.

• Prediction Head. The extracted features finally feed into the
fully connected layer, which has a size of 64× 32× 2. It combines
features from previous layers and flattens the output into the
appropriate shape. The output of the model is a direction vector
𝑦 = [𝛼, 𝛽], where 𝛼 is the eyeball’s azimuth angle and the 𝛽 is
the eyeball’s elevation angle.

• Camera-guided Training. The vision processing module ini-
tially tracks the user’s face and subsequently localizes the posi-
tion of the eyes. It then calculates the eye rotation angle based on
the relative position of the pupil within the eye region. Guided
by these vision-based techniques, the DNN model endeavors to
create a feature extractor similar to those used in vision process-
ing, but specifically designed to handle RF signals. The vision
processing module ultimately provides the ground truth angle
to the DNN, which then utilizes Mean Squared Error (MSE) to

calculate the loss for angle estimation. The loss function is as
follows:

L𝑎𝑛𝑔𝑙𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2, (5)

where 𝑦𝑖 is the predicted angle vector and the 𝑦𝑖 is the ground
truth angle vector.

4.3 Data Collection
We gathered training data exclusively in a controlled laboratory
setting, where participants engaged with the radar and camera
setup positioned on a table before them. Participants were seated
3 m away from the radar, facing it directly as shown in Fig. 10(a). A
total of 8 participants took part in the data collection. In each data
collection session, participants were instructed to rotate their eyes
in up, down, right, and left directions. Recognizing the potential
fatigue associated with eye rotation, each test session had a limited
duration of 3 minutes. Each participant will repeat 15 sessions,
generating a total of 27,000 data samples.

We note that during the test phase, the eye motion signals are di-
rectly captured using RadEye (no camera presents). In this scenario,
the length of the signal vector may differ from the training data. To
ensure consistent input dimensions, downsampling or interpolation
techniques are employed to normalize the data dimension.

5 Experimental Evaluation
In this section, we conduct experiments to evaluate the performance
of RadEye. Particularly, we aim to answer the following questions.
• Q1 (§5.4): What is RadEye’s detection rate of eye motions?
• Q2 (§5.5): What is RadEye’s accuracy in estimating eye rotation
angles?

• Q3 (§5.6): What is RadEye’s resilience to environmental changes
and interference?

• Q4 (§5.7): What is RadEye’s zero-shot performance (for unseen
users and in unseen scenarios)?

5.1 Implementation
Hardware. Fig. 11 shows the hardware of RadEye. We have a fab-
ricated a PCB board capable of transmitting and receiving FMCW
signals at 5 GHz, usingWi-Fi’s electronic components. The received
signal undergoes amplification with a power amplifier (PA), and
then it is mixed with the transmitted signal. The electronic compo-
nents of this board also include Tx/Rx 16 dB coupling, RF I/Q mixer,
and baseband filtering. Additionally, we have custom-designed and
optimized a 4× 4 patch antenna using HFSS for signal transmission
and reception. A single patch antenna provides an 15 dBi gain, re-
sulting in a total gain of 30 dBi. The patch antenna design maintains
the signal beam within a narrow range while providing significant
gain, enabling RadEye to detect eye motions from a distance. The
mixed signal is subsequently fed into a USRP N210 with an LFRX
daughterboard to convert the analog signal into baseband I/Q sam-
ples. The FMCW signal generated by RadEye sweeps from 5.4 GHz
to 6.5 GHz. Each chirp has a time duration of 1 ms, with 600 𝜇s for
frequency ramping and 400 𝜇s idle.

Software.We implemented our data preprocessing module in
C++ using the GNURadio out-of-tree module. A crucial function
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Figure 10: Experiment settings in a lab for different distances and angles. (a) 3 meters. (b) 4 meters (c) 5 meters. (d) 15◦. (e) 30◦.
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Figure 11: The system setting for RadEye.

of this module is to synchronize the chirps, facilitating the extrac-
tion of useful samples. However, owing to the absence of clock
synchronization between the USRP ADC and FMCW chirps, only
the software-based method can be employed for synchronization.
To address this issue, we utilize a high-sampling rate of 2.5 MSps
and the idle period for synchronization. Initially, we detect the idle
period based on the smooth amplitude during this interval, followed
by fine-grained detection to identify the first sample of the chirp.
The DNN model was implemented using PyTorch with the Adam
optimizer. Throughout the training process, a batch size of 200 and
50 epochs were set.

5.2 Experimental Setting
During the experiments, participants were seated on a chair facing
the antennas of RadEye. The antennas were positioned 1.1 m above
the ground on a tripod. A varifocal camera was placed on top of the
laptop to capture the participants’ face video for their eye motion
detection using the SOTA gaze tracking tool [17]. Our experimental
studies show that this camera-based eye detection tool achieves
about 98% accuracy as shown in Fig. 13. While it is not perfect,
we use the detection results from the camera-based tool as the
ground-truth labels to supervise the training of RadEye’s DNN
model. During the inference, we also use the camera-based detection
results as the ground-truth to evaluate the estimation accuracy of
RadEye.

RadEye and camera operated concurrently, synchronized with
the PC clock, to estimate participants’ eye rotations. RadEye, with
a higher sample rate than the camera’s frame rate (10 frames/s),
resulted in each camera-captured direction being mapped to 200
continuous chirps. Each training sample in our dataset is a 200 ×
2 matrix, where 200 is the time dimension, and 2 is the feature
dimensions (azimuth and elevation).
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Figure 12: The eye rotation directions captured by a camera.
It is used as ground truth for DNN training and evaluation.
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Figure 13: Tracking accuracy of eye rotation with camera at
varying distances.

5.3 Performance Metrics
We consider the following three performance metrics.
• Eye Motion Detection Rate (EMR). The eye motion here is
defined as the eye blink and eye rotation. The signal processing
module extracts the eye motion signals from RF data before
sending them to the DNN model. We define Detection rate =
Number of eye motions detected
Total eye motions performed .

• Estimation Error of Eye Rotation Angle (ERA). The eye
rotation angles are illustrated in the bottom right corner of Fig. 7.
The estimation error of azimuth angle is defined as 𝑒𝛼 = |𝛼 − 𝛼 |,
where 𝛼 is the estimated eye rotation azimuth angle and 𝛼 is
the eye rotation angle ground truth provided by the camera.
Similarly, the estimation error of elevation angle is defined as:
𝑒𝛽 = |𝛽 − 𝛽 |.

• Estimation Accuracy of Eye Rotation Direction (ERD).
Some applications of RadEye (e.g., remote TV control) may
not require precise angle measurements for functionality but
instead focus on eye rotation direction. This metric evaluates
the accuracy of classifying eye movement directions into four
categories: up, down, left, and right. Specifically, we define
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

Number of correct direction estimations
Total eye rotations performed .
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Figure 14: (a) RadEye’s eye blink/rotation detection rate. (b) RadEye’s eye rotation estimation error at different distances. (c)
RadEye’s accuracy of estimating eye rotation directions. (d) The confusion matrix of RadEye’s eye rotation direction estimation
at 3 m distance.

5.4 Eye Motion Detection Rate
RadEye’s eye motion detection ability, including eye rotation and
eye blink detection, serves as the foundation of many eye track-
ing applications. While RadEye focuses on estimating eye rotation
angles, eye blink detection is also one of its key components. This
feature not only enhances the input of RadEye but also enriches
its functionalities. Therefore, we evaluate RadEye’s success rate of
detecting eye rotation and blink.

We instructed eight participants to perform eye rotations and
blinks from three different distances: 3 m, 4 m, and 5 m, as shown
in Fig. 10(a)-(c). A total of 5 minutes of data were collected at each
distance for each participant. Fig. 14(a) shows RadEye’s average eye
motion detection rate for 8 individuals at various distances. The
highest detection rate for eye blink and eye rotation is 94% and
96%, respectively. This was observed at the distance of 3 m. Overall,
the detection rate is consistent. Even at a distance of 5 m, RadEye
achieves 88% detection rate for eye blinks and 91% detection rate
for eye rotation. This confirms the robustness of RadEye in eye
motion detection in different environmental settings. Numerically,
the standard deviation of eye blink detection across the eight in-
dividuals is about 2%. For the eye rotation detection, the standard
deviation is about 4%. This slight difference can be attributed to
the simplicity and similarity of eye blink motion across different
individuals. Additionally, the detection rate of eye rotations is con-
sistently higher than that of eye blinks in all cases. This is not
surprising, as eye rotations involve more significant facial muscle
movements compared to eye blinks.

5.5 Eye Rotation Angle/Direction Estimation
Eye Rotation Angle Estimation. We conducted the experiments
in the same way as described in §5.4. Fig. 14(b) presents the cumu-
lative distribution function (CDF) of the angle estimation errors of
RadEye for all participants at three different distances. The mean
azimuth/elevation errors at 3 m, 4 m, and 5 m are approximately
14◦/7◦, 20◦/18◦, and 24◦/21◦, respectively. Evidently, the eye ro-
tation angle estimation error increases as the distance increases.
This is not surprising, as the radio signal has a larger attenuation
over a longer distance. Additionally, we observed that the elevation
angle estimation error is consistently smaller than the azimuth
angle estimation error. This observation agrees with our previous
observation in §2, i.e., eye’s vertical movements (up and down)
generate more pronounced changes in radar signal’s amplitude and
phase compared to eye’s horizontal movements (right and left).
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Figure 15: RadEye’s estimation accuracy of eye rotation direc-
tions when the target person is located at different distances
and angles.

Eye Rotation Direction Estimation. As some applications of
RadEye need only the eye rotation direction information, we first
classify the estimated eye rotation angle into four directions (up,
down, left, and right) and then evaluate the estimation accuracy.
Since the slight eye motions are always accompanied by humans,
we consider the eye rotation action effective only when the azimuth
𝛼 < 50◦ or 𝛼 > 130◦, or the elevation 𝛽 < 50◦ or 𝛽 > 130◦, as exem-
plified by Fig. 12. Using the effective input captured by the camera
as ground truth, we can measure RadEye’s estimation accuracy.
Fig. 14(c) plots the average estimation accuracy for eight people at
three different distances. The average estimation accuracy at 3 m,
4 m, and 5 m is 90.0%, 84.7%, and 83.5%, respectively. These accuracy
levels are suited for most daily applications requiring human input.
The standard deviations at 3 m, 4 m and 5 m are 3%, 5% and 5.5%.
This indicates RadEye’s robustness when detecting eye rotation
of different users. Additionally, Fig. 14(d) presents the confusion
matrix in the 3-meter case. It is evident that distinguishing between
right and left eye rotations is more challenging compared to up
and down eye rotations. This suggests that developing an applica-
tion with binary input for up and down movements could enhance
RadEye’s robustness.

5.6 RadEye’s Robustness
RadEye’s Field of View. RadEye has two patch antennas for signal
transmission and reception. Ideally, the target person should be
perpendicularly facing RadEye’s antenna. In practice, the target
person may not be ideally positioned. Therefore, we conducted
experiments to evaluate RadEye’s field of view by examining its
estimation accuracy when the target person was located in different
directions, as illustrated in Fig. 10(d)-(e). Specifically, five partici-
pants performed eye rotations at angles of 15◦ and 30◦ from three
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Figure 16: (a) The interference test in a lab. (b) Test at 5 m in
the conference room. (c) Test at 5 m in the hallway.
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Figure 18: RadEye’s estima-
tion accuracy of eye rota-
tion directions during self-
body motions.

different distances. In total, six scenarios were studied. In each sce-
nario, participants performed eye rotations for 5 minutes. Fig. 15
shows our experimental results. It can be seen that RadEye achieves
a high estimation accuracy when the target person is located at 0◦,
15◦, and 30◦. Overall, the estimation accuracy remains above 82%
in all cases. This indicates that RadEye has at least 60◦ field of view.

Impact of Moving Objects. Since static objects can easily be
filtered out in the received signal, we further evaluated RadEye’s
resilience to interference caused by nearby walking individuals.
In the experiments, another person was asked to walk around the
user in close proximity, as depicted in Fig. 16(a). We measured the
accuracy in three scenarios where the distance between the user
and the walking person was 1 m, 2 m, and 3 m. In each scenario,
five participants performed eye rotations for 5 minutes. Fig. 17
shows the results. The presence of a walking person causes a slight
decrease in RadEye’s estimation accuracy. Overall, RadEye achieves
accuracies of 84%, 88%, and 89% when the walking person is 1 m,
2 m, and 3 m away from the participant, respectively. We note that
all these experiments were conducted in normal scenarios. The
participants were only instructed to keep their heads still when
performing eye rotations. No other restrictions were made to avoid
interference from multipath effects or other normal physiological
activities of the participants.

Impact of Self-Body Motions. Besides nearby moving objects,
the participant’s own body movements may also affect RadEye’s
performance. To evaluate RadEye’s usability in practical scenarios,
we studied the cases where the participant was speaking, shaking
head, or engaging in leg or hand motions. A participant was asked
to perform these three activities separately while executing eye ro-
tations. In each scenario, the participant performed eye rotations for
five minutes at a distance of 3 m. Fig. 18 presents our measurement
results. It can be seen that RadEye’s accuracy remains at 82% when
the participant performed leg or hand motions. However, RadEye’s
accuracy decreases to 34% when he was shaking his head and to
45% when he was speaking. This reduction could be attributed to
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Figure 19: Wi-Fi interference test: experimental setup (left)
and experimental results (right).

the limited resolution of RadEye. Since the legs and hands are more
than 14 cm away from the eyes, their movements have minimal
impact on RadEye’s detection accuracy. However, head and mouth
movements interfere with the eye rotation signal, leading to a lower
detection accuracy.

Impact ofWi-Fi signals.As RadEye operates at 5 GHz, overlap-
ping with part of the Wi-Fi spectrum, we conducted experiments to
evaluate the impact of Wi-Fi signal interference on RadEye. AWi-Fi
interferer was set up using the USRP and placed next to RadEye,
as shown in Fig. 19, continuously transmitting Wi-Fi packets. The
Wi-Fi signals were generated at two frequencies, 5.5 GHz and 5.825
GHz, with a bandwidth of 20 MHz. The experiments were con-
ducted in a static environment. We compared the IF signals from
RadEye with and without Wi-Fi interference, and the results are
shown in Fig. 19. We observed that the IF signals remain nearly
identical, regardless of the presence of Wi-Fi signals.

RadEye appears to be resilient to Wi-Fi interference due to two
key factors. First, RadEye operates with a broad bandwidth of 1.1
GHz, whereas Wi-Fi signals occupy only 20 MHz. Second, RadEye
employs FMCW modulation, which contrasts with Wi-Fi’s OFDM
modulation. OFDM signals exhibit pseudo-noise characteristics,
and when they are correlated with FMCW signals over time, the
resulting correlation is close to zero. This theoretical outcome ex-
plains why RadEye can effectively resist interference from nearby
Wi-Fi devices.

5.7 Zero-Shot Performance
Since RadEye has a DNN component for eye rotation detection, it
is critical to evaluate its zero-shot performance against new users
and new scenarios.

New Users. The generality of the trained model is crucial as
it allows for easy extension to new users with minimal effort. To
evaluate this, we conducted a cross-user test for RadEye. Specifically,
four new users whowere not involved in the training data collection
were invited to perform eye rotations at a distance of 5 m. Among
these users, participants B and C wore glasses. Each participant
contributed 5 minutes of data. Fig. 20 reports RadEye’s estimation
accuracy for these four different users. The highest accuracy is
86% for user A, and the lowest accuracy is 77% for user D. Notably,
wearing glasses does not seem to affect the results much. RadEye
achieves an average accuracy higher than 80% for new users. This
demonstrates the generalizability of RadEye to new users.

New Environments. In addition to evaluating RadEye’s gen-
eralizability to new users, we also assessed its zero-shot perfor-
mance in unseen scenarios. Four new participants performed eye
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Figure 20: The accuracy for
users not in the training set.
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Figure 21: The accuracy in
the different environments.

rotations at a distance of 5 m in both a conference room and a
hallway. Fig. 16(b)-(c) illustrates our experimental settings, where
participants faced RadEye at an angle of 0◦. Fig. 21 presents the
measurement results. RadEye achieves accuracies of 83% and 84%
in the conference room and hallway, respectively. These results
demonstrate RadEye’s ability to generalize to unseen environments
as well.

6 Related Work
6.1 Eye Motion Recognition
Acoustic-based Detection. As speakers and microphones are now
commonplace on mobile devices, acoustic signals have become
widely utilized for recognizing human daily activities. BlinkListener
[22] can detect eye blink motions using acoustic signals, modeling
variations caused by eye blinks and interference. By leveraging
interference, they identify an optimal position to maximize the
variation induced by eye blinks. TwinkleTwinkle [5] addresses a
similar objective using a different approach. They employ a phase
difference-based method to detect potential blink motions, followed
by a model-based approach to distinguish subtle motions. Addi-
tionally, they establish a language input system based on ASCII
code and Morse code. While RadEye is capable of recognizing eye
motions, the mentioned works focus solely on detecting eye blinks
at limited distances.

RF-basedDetection. In the study by Zhang et al. [47], an off-the-
shelf mmWave FMCW radar is employed to detect eye blinks. They
introduce an Adaptive Variational Mode Decomposition (AVMD) al-
gorithm to extract the blink signal, achieving an effective detection
distance of up to 1.2 meters. Several other studies [3, 24, 39] have
taken a similar approach with mmWave FMCW radar. In addition to
the mmWave signal, BlinkRadar [13] employs UWB radar to detect
eye blinks in a driving scenario. They implemented a customized
impulse-radio ultra-wideband (IR-UWB) radar. By analyzing signal
features in the complex domain, the system can isolate eye blinks
without interference from other motions.

Camera-based Detection. Due to the ubiquity of web cameras
and smartphone cameras, significant progress has been made in
using cameras to track eye motion. In the computer vision research
domain, deep learning networks have been effectively employed to
predict gaze direction [16, 30, 49, 51]. Furthermore, in the security
domain, studies have shown that the camera on a mobile phone
can even track the gaze trace, raising concerns about potential
password leakage [4, 38]. Additionally, there are commercial eye-
trackers available on the market [10, 33] that support high-accuracy
eye-tracking at an affordable price. However, it’s worth noting that
all camera-based eye-tracking solutions may raise privacy concerns
and may not function effectively in low-light scenarios.

Wearable-based Detection. With the prevalence of VR de-
vices, smart glasses offer another solution for eye motion detection.
Google Glass [14] and Jins MEME pair of eyeglasses [6] demon-
strated the potential to detect eye motions several years ago. Build-
ing on existing approaches, Liu et al. [23] attached a copper elec-
trode to the glass frame to sense eye blinks by utilizing the ca-
pacitance variation between the electrode and eyelid. However,
wearable devices like these require users to keep the glasses on
their heads, which may be inconvenient for daily use.

6.2 Fine-grained HAR
MmWave-basedRecognition.MmWave FMCWradar has reached
great performance these years due to its fine-grained detection abil-
ity and affordable cost. They are extensively used in human activity
recognition and vital sign detection [11, 21, 41, 42, 48, 50]. Thanks
to their substantial bandwidth and diminutive wavelength, they
attain millimeter-level accuracy in detecting object movements.

Wi-Fi-based Recognition. Channel State Information (CSI) in
Wi-Fi networks has been applied across various sensing applica-
tions, including gesture recognition [9, 19, 45], vital sign detection
[37], and radio imaging [15, 20, 29, 36]. Nevertheless, Wi-Fi, charac-
terized as a non-coherent system due to the physical separation of
its transmitter and receiver, faces limitations in detection accuracy
stemming from timing, frequency, and phase misalignments.

7 Limitations and Discussions
In this section, we point out the limitations of RadEye and discuss
potential solutions to address them.

• Interference caused by head andmouthmovements.While
RadEye is resilient to interference from surrounding environ-
ments, it requires the users to keep their heads still during use.
Movements such as head shaking, speaking, or other facial ex-
pressions can obscure the eye rotation signals, resulting in un-
successful detection. To address this issue, one approach is to
increase the bandwidth of RadEye. When the bandwidth is suffi-
ciently large, RadEye can differentiate eyes from mouth in the
frequency domain, thereby eliminating the interference from
head and mouth movements for eye motion detection.

• RadEye versus mmWave radar.MmWave radar is capable of
detecting subtle movements, such as eye motion, and is commer-
cially available on the market. However, its detection range is
relatively short due to the rapid signal attenuation of mmWave
propagation. In contrast, RadEye offers a significantly larger
range for eye motion detection but requires a wide spectrum
bandwidth at lower frequencies. Therefore, both mmWave radar
and RadEye have distinct advantages and limitations. MmWave
radar is better suited for short-range eye tracking, while RadEye
is more appropriate for long-range use cases.

• Physical size of RadEye. Our current prototype of RadEye is
not compact enough for certain applications, such as installation
on wheelchairs. This limitation arises because our prototype has
not yet been optimized. In fact, the current design has signifi-
cant potential for size reduction through various optimizations,
including using smaller packages (e.g., SMD) for electronic com-
ponents, more efficient power management chips, improved
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patch antenna designs, and shorter cables. Moreover, integrat-
ing the patch antennas directly into the PCB could significantly
reduce the system’s physical size, making it more suitable for
space-constrained applications.

• User fatigue. RadEye currently recognizes eye rotations in only
four directions, requiring users to rotate their eyesmultiple times
to input a word. This tends to cause eye fatigue. Future work will
focus on developing a system capable of continuously tracking
eye rotation directions with high accuracy, rather than limiting
recognition to four discrete directions. This improvement would
enhance input efficiency and significantly reduce user fatigue.

8 Conclusion
Remote eye tracking has many potential applications ranging from
HCI-based input to eye disease detection. While camera has been
widely studied for eye tracking, its application in practice may raise
privacy concerns in some scenarios. In this paper, we presented
RadEye, an RF sensing system capable of recognizing fine-grained
human eye movement from a long distance. The challenge in the de-
sign of RadEye is to detect tiny eyeball movements in the presence
of interference from other moving objects. RadEye addresses this
challenge through a joint hardware and software design. For hard-
ware, RadEye custom-designed a sub-6GHz FMCW radar for fea-
ture extraction and interference mitigation. For software, a camera-
guided DNN model has been crafted to improve RadEye’s detection
accuracy. Extensive experiments show that RadEye achieves 90%
accuracy when detecting people’s eye rotation directions (up, down,
left, and right) in various scenarios.
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