
1

AuthIoT: A Transferable Wireless Authentication
Scheme for IoT Devices without Input Interface

Shichen Zhang, Pedram Kheirkhah Sangdeh, Hossein Pirayesh, Huacheng Zeng, Qiben Yan, and Kai Zeng

Abstract—Wireless Internet-of-Things (IoT) applications have
penetrated every aspect of our society and become increasingly
important in smart homes, smart cities, and smart hospitals.
However, many WiFi-based IoT devices (e.g., light switches,
door/window open alert sensors, and Google Home) do not have
input interfaces such as keypad or touchscreen due to their limits
in physical size, power consumption, and/or manufacturing cost,
making it inconvenient and onerous for end users to authenticate
those IoT devices for wireless Internet access. In this paper,
we present AuthIoT, a learning-based authentication scheme for
wireless IoT devices without input interfaces. The key component
of AuthIoT is a channel state information (CSI) based character
classification algorithm for a WiFi access point (AP), which
recognizes the passcode from an IoT device when an end user
holds it in hand and writes the passcode over the air. AuthIoT has
two salient features: i) it is transferable for cross-environment
applications; and ii) it works in more realistic scenarios where
the AP is equipped with nonlinear antenna array. We have
built a prototype of AuthIoT and evaluated its performance on
two testbeds: Intel 5300 WiFi card with three linear antennas
and USRP N310 with four nonlinear (square-shaped) antennas.
Experimental results show that AuthIoT achieves 84% and 83%
recognition accuracy on the two testbeds.

Index Terms—Internet of Things, IoT authentication, wireless
sensing, letter recognition, deep learning

I. INTRODUCTION

The Internet-of-Things (IoT) applications have penetrated
every aspect of our society and have significantly facilitated
our lives. Per Statista [1], the number of IoT devices world-
wide is forecast to almost triple from 8.74 billion in 2020
to more than 25.4 billion in 2030. In real-world applications,
many IoT devices rely on WiFi connections for Internet access
and have no input interfaces (e.g., keypad or touchscreen) due
to their limits in physical size, power consumption, and/or
manufacturing cost. For example, smart home devices such
as Gosund Smart WiFi power outlet [2], SYLVANIA WiFi
dimmable LED light bulb [3], and AGSHOME WiFi Windows
open alert sensors [4] require WiFi network access to be
functional, but they have no input interfaces which end users
can use to type in WiFi passcode for wireless Internet access.
With the proliferation of small-sized wireless sensors in smart
environments, the presence of wireless IoT devices without
input interfaces will become commonplace.
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Fig. 1: A CSI-based authentication scheme for wireless IoT
devices without input interfaces.

A prevalent method for authenticating WiFi-based IoT de-
vices without input interfaces is by leveraging pre-deployed
platforms such as Google Home Assistant [5] and Amazon
Alex [6], which allows a WiFi router to recognize and au-
thenticate an IoT device using a smartphone or computer.
This method, however, requires end users to have a smart-
phone/computer with pre-installed proprietary apps such as
Google Home and Amazon Alexa. It also requires Internet
ready for use to gain the support of Google or Amazon cloud
services. These requirements make this method inapplicable in
the scenarios where a smartphone or Internet is not available
and where the IoT device owners do not want to get involved
in commercial cloud platforms.

In this paper, we present AuthIoT, a wireless communication
authentication scheme for IoT devices without input interfaces.
AuthIoT requires neither assistance from other devices nor
support from an Internet-based software platform. It is a chan-
nel state information based (CSI-based) passcode recognition
scheme for a WiFi communication system, as shown in Fig. 1.
It consists of an access point (AP), an IoT device, and an end
user. Specifically, AuthIoT works as follows: The end user
holds the IoT device in hand and writes the passcode over the
air; and the AP leverages recent advances in deep learning to
recognize the passcode input from the IoT device based on
the spatial and temporal CSI features.

A key challenge in the design of AuthIoT is to maintain
its transferability across different environments. As CSI is
significantly affected by the multipath effect of a wireless
channel, a wireless AP tends to observe different CSI in differ-
ent environments. Hence, at the wireless AP, using raw CSI for
passcode recognition is not a plausible strategy because a deep
neural network (DNN) trained with raw CSI in an environment
does not work well in another environment (based on our ex-
perimental results). To address this challenge, AuthIoT extracts
environment-independent features as the input for the training
and inference of a DNN. Specifically, AuthIoT computes the
angle of arrival (AoA) of the line-of-sight (LoS) signal path by
leveraging recent advances in wireless localization [12], [13],
[14], [15], [16], and uses the AoA (as well as normalized
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TABLE I: Wireless writing and gesture recognition.

Ref. (Tx,Rx)
ant #

Nonlinear
antenna array Dataset main approach Learning features computation

complexity
cross-environment

transferability
Reported
accuracy

WriFi [7] (2,3) No 26 capital letters GMM-HMMs CSI amplitude High No 87%
WiReader [8] (1,2) No 26 capital letters LSTM model CSI amplitude Medium No 90%

LetFi[9] (1,6) No 26 capital letters SOM network CSI amplitude Medium No 95%
WiDraw [10] (30,3) No Any Trajectory tracking AoA Medium Yes 91%
Wi-Wri [11] (2,3) No 26 capital letters kNN model CSI amplitude High No 82%

AuthIoT (1,3 or 4) Yes 48 characters CNN-based learning LoS AoA, CSI amplitude Medium Yes 84%

channel amplitude) as the input for the training and inference
of DNN. Since different passcode characters tend to generate
different AoA patterns, an AP is capable of recognizing the
passcode characters if the DNN is well trained.

Another challenge in the design of AuthIoT is to com-
pute the LoS AoA of received packets for an AP with a
nonlinear antenna configuration. While AoA estimation of
wireless packets has been studied in wireless localization (e.g.,
[12], [17], [13], [14], [15], [16]), most of existing techniques
deal with the case where the antenna elements are equally-
spaced and linearly installed. However, many WiFi routers and
other APs are equipped with antenna elements in a nonlinear
shape so as to save space. Existing methods such as MUSIC
(MUltiple SIgnal Classification) algorithm cannot be directly
used to estimate AoA for a receiving device with nonlinear
antenna configuration. To address this challenge, AuthIoT
extends two-dimensional MUSIC algorithm to the case where
the receiver (wireless AP) is equipped with nonlinear antenna
elements. Following the idea from SpotFi [12], AuthIoT jointly
considers the AoA and ToF (time of flight) to enhance the AoA
resolution of different signal paths.

Based on the environment-independent features (LoS AoA)
as well as the normalized amplitude of CSI, AuthIoT employs
a DNN to recognize the passcode when an end user continu-
ously writes the passcode characters over the air by holding
the IoT device in her hand. Once the AP detects the passcode,
it will grant the network access to the IoT device; otherwise, it
will wait until the correct passcode is detected or the maximum
number of attempts is reached. We have built a prototype of
AuthIoT and evaluated its performance on two distinct AP
testbeds: i) Intel 5300 WiFi card with three linear antennas,
and ii) USRP N310 with four nonlinear (square-positioned)
antennas. Experimental results show that AuthIoT achieves
84% successful rate of passcode character recognition on the
former testbed and 83% successful rate on the latter testbed,
both for cross-environment applications.

The contributions of this paper are summarized as follows.

• AuthIoT is, to the best of our knowledge, among the first
that explores environment-independent features of CSI
for authenticating IoT devices without input interfaces.
It is transferable to a new environment for handwriting
recognition once its DNN is well trained.

• AuthIoT extends two-dimensional MUSIC algorithm for
AoA estimation from linear, equally-spaced antenna con-
figuration to nonlinear antenna configuration.

• We have built a prototype of AuthIoT and demonstrated
its performance in real scenarios. Our experimental re-
sults show that it can achieve more than 83% passcode

recognition accuracy in cross environments for both linear
and nonlinear antenna configurations.

II. RELATED WORK

We survey the literature in the following category.
Authenticating IoT Devices without Input Interface: As
mentioned before, a mainstream authentication method for
smart-home IoT devices is to leverage the platforms such as
Google Home [5] and Amazon Alex [6]. This method, how-
ever, requires users to have a smartphone with pre-installed
proprietary apps, to have Internet access, and to share the data
with the platforms. In addition to the commercial products,
research advances have been made for IoT authentication.

TouchAuth [18] harnesses induced body electric potentials
(iBEPs) for IoT authentication by having users wear a wrist-
band to touch an analog-to-digital (ADC) pin of the IoT de-
vice. It makes the ADC pin touchable by connecting devices’
ADC pins to their conductive exteriors. The authentication is
performed by measuring the IBEPs similarities between the
wristband and the smart object. P2Auth [19] authenticates
IoT devices without input interface by leveraging their inertial
measurement unit. It requires users to perform unique petting
operations that can be sensed by both an IoT device and a
wristband device. It compares the captured data from the two
devices and makes a decision for the authentication based on
their similarity. SFIRE [20] is a secret-free trust establishment
protocol that pairs commercial wireless devices with a hub.
It requires a user to move a helping smartphone around the
wireless device and measures the similarity of RSS signals
for authentication. Move2Auth [21] is another authentication
scheme for IoT devices without an input interface. It requires
users to hold a smartphone and perform one of two hand-
gestures in front of an IoT device.

In contrast to the above works, AuthIoT takes a very
different approach to authenticate IoT devices without input
interface. It requires neither assistance from smartphones nor
hardware/software modifications on IoT devices.
CSI-based Handwriting Recognition: Our work is closely
related to the research in this area. Table I presents a compar-
ison of our work with prior work. WriFi [7] is a CSI-based
handwriting system that comprises a WiFi AP, a WiFi client
device, and a user writing 26 letters over the air. In this system,
CSI amplitude is collected for learning-based recognition.
Operations such as principal component analysis (PCA) and
fast fourier transform (FFT) have been performed to extract
the CSI features for hidden Markov model (HMM) training
and inference. The accuracy is reported to be 86%. Similar to
WriFi, Wi-Wri [11] is another CSI-based handwriting letter
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recognition system. It is based on k-nearest neighbors (k-NN)
model and uses dynamic time warping (DWT) to calculate
the distance between CSI waveform and classified data. It
reports 83% recognition accuracy for 26 letters. WiReader [8]
is another work in this area. It exploits CSI from commercial
WiFi devices to extract activities-related information. It em-
ploys long short-term memory (LSTM) model for recognition
and adopts PCA and discrete wavelet transform (DWT) for
CSI feature extraction. It reports 90% recognition accuracy for
26 letters with intelligence text correction. LetFi [9] is also a
CSI-based over-the-air handwriting recognition system in WiFi
networks. It employs multi-domain feature extraction method
and self-organizing mapping neural networks (with SoftMax
regression classifier) to recognize 26 letters. The reported
recognition accuracy is 95%. WiDraw [10] is a handwritten
recognition system which allows a user to write over the air.
It recognizes hand movement trajectory based on the analysis
of collected CSI. With the presence of 30 transmitters, it can
achieve 91% word recognition accuracy and superior accuracy
for hand movement patterns.

As shown in Table I, AuthIoT differs from the above
works in several aspects: i) AuthIoT has a larger dataset (48
characters in AuthIoT versus 26 letters in the above-mentioned
works); ii) it enables its cross-environment transferability by
design; and iii) it works for WiFi AP with nonlinear antenna
array.
CSI-based Gesture Recognition: In addition to handwriting
recognition, many works have also been done for CSI-based
gesture recognition [22], [23], [24], [25], [26], by extracting
and recognizing the temporal, spatial, and Doppler features
of hand movements. Generally speaking, CSI-based gesture
recognition can achieve very high accuracy (over 90%), be-
cause it has a small number of dataset (e.g., 6 gestures). In
contrast, AuthIoT has 48 characters in its dataset, which is
much larger than the above networks. In addition, AuthIoT
distinguishes itself from previous works by focusing on cross-
environment transferability design.
Wireless Localization: Another research line related to our
work is CSI-based wireless localization in WiFi networks [12],
[14], [17], [27], [16]. Particularly, SpotFi [12] presents an
accurate indoor localization scheme using commercial WiFi
devices. It proposes a two-dimensional MUSIC algorithm by
leveraging the information in both spectral and spatial domains
to enhance the resolution of AoA estimation. It jointly esti-
mates AoA and ToF (time of flight) of incoming WiFi signals
using multiple antennas and broadband (40MHz) spectrum.
The localization median accuracy is reported to 40cm using
the commercial WiFi card. AuthIoT borrows the idea of AoA
estimation from the above works, and extends the antenna
setting from linear to nonlinear case for IoT authentication
applications.

III. AUTHIOT: DESIGN OVERVIEW

A. System Setting and Operation

AuthIoT is designed for a wireless communication system
as shown in Fig. 1, which comprises a wireless AP (e.g.,
WiFi router), an IoT device, and an end user. IoT devices

do not have input interfaces such as keypads and touchscreens
due to the limits in their physical size, power consumption,
and/or manufacturing cost. Examples of such IoT devices
include WiFi LED light bulbs [3], WiFi light switches [28],
and window/door open alert sensors [29]. The wireless AP
has multiple antennas for data packet reception. This is very
common for WiFi routers, most of which are equipped with
four or more antennas. In such a system, AuthIoT works as
follows.

• End User: The end user first triggers wireless AP to
exchange packets between itself and the IoT device at
a certain rate (e.g., 200 packets/s). She then holds the
IoT device in front of the wireless AP with a distance of
about 2 meters and ensures that there is a LoS signal path
between the IoT device and the wireless AP. After that,
the end user writes each of the passcode characters over
the air until the IoT device is successfully authenticated.

• IoT Device: The IoT device needs no hardware or
software modification. It responds to the sounding packets
from the wireless AP (e.g., using ACK packets) so that
the wireless AP can estimate wireless channel at a desired
rate.

• Wireless AP: The wireless AP estimates the channel
between itself and the IoT device using the packets
from the IoT device. It continuously runs a modified
MUSIC algorithm to estimate the LoS AoA of the packets
from the IoT device and feed the LoS AoA along with
normalized CSI amplitude to a DNN for the recognition
of each character in the passcode. It authenticates the IoT
device once the passcode is detected or the maximum
number of attempts is reached.

B. Challenges and Our Approach

Compared to prior CSI-based recognition work [8], [11],
[7], [10], [9], AuthIoT needs to recognize a much larger set of
characters, which include upper-case letters, low-case letters,
numbers, and special characters. In addition, AuthIoT faces
the following challenges in its design and implementation.
Cross-Environment Transferability: A challenge in the de-
sign of AuthIoT is to maintain its cross-environment trans-
ferability, so that the system can be used in any environment
once its DNN has been trained. To address this challenge,
AuthIoT uses environment-independent CSI features as its
input for passcode recognition. Specifically, it computes the
LoS AoA of the received packets from the IoT device based
on the estimated CSI by leveraging recent advances in wireless
localization [12], [17], [14], [16], and uses the LoS AoA as
the main feature for passcode recognition. It should be noted
that an end user can always hold the IoT device in front of its
wireless AP to ensure the existence of LoS path between the
IoT device and its AP.
Nonlinear Antenna Array at AP: Although the LoS AoA
estimation techniques have been well studied for wireless
localization, most of them consider the case where the receiver
is equipped with linearly, equally-spaced antenna array [12],
[17], [14], [16]. However, many off-the-shelf wireless APs
such as WiFi routers are equipped with nonlinear antenna
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array (e.g., rectangular-installed) to save space. As expected,
the AoA estimation techniques proposed for a device with
linear antenna array cannot be directly used for a device with
nonlinear antenna array. To address this challenge, AuthIoT
revisits the MUSIC algorithm and extends it for the case where
the device has nonlinear antenna array. AuthIoT also borrows
the idea from SpotFi [12] to jointly estimate AoA and ToF so
as to improve the AoA resolution.
Indistinguishable Characters: Another challenge lies in the
fact that some character pairs are hard to distinguish in their
handwriting format, such as “z” and “Z”, “o” and “O”, “s” and
“S”, “v” and “V”, letter “I” and number “1”, etc. Sometimes,
these handwritten character pairs even cannot be distinguished
by a human. Unfortunately, this challenge is hard to address
from a technical perspective. Therefore, AuthIoT resorts to
regulation. AuthIoT asks end users to use a passcode that does
not include indistinguishable pairs of characters. Excluding
some characters will not compromise the passcode security as
there are still sufficient characters to be used.

C. Security of AuthIoT

Essentially, AuthIoT serves as an interface for an AP to
receive a passcode from an end user for authenticating a
particular IoT device. It does not alter the authentication
mechanism and thus has the same authentication safety as
existing methods. However, due to the broadcast nature of
wireless signals, AuthIoT may face the passcode leakage
problem. A malicious user may overhear the signal from IoT
device and attempt to infer the passcode for AP access. To
address this issue, a substitution cipher [30] can be applied to
the passcode at wireless AP, and the substitution rules can be
updated regularly to avoid replay attacks.

IV. AOA ESTIMATION FOR GENERAL ANTENNA ARRAY

This section first offers a primer on the existing MUSIC al-
gorithm for AoA estimation at a wireless device equipped with
uniform linear antenna array, and then extends the MUSIC
algorithm to the case where the wireless device is equipped
with a general (linear or nonlinear) antenna array.

A. A Primer: MUSIC for Uniform Linear Antenna Array
(MUSIC-ULAA)

System Modeling: The basic idea of AoA estimation is that
different signal propagation paths are likely to have different
AoAs at a receiving device. The different AoAs will introduce
a corresponding phase shift across the array of antennas. For
a uniform linear antenna array, once the antenna space and the
phase shift are given, the AoA can be accordingly calculated.
To understand AoA estimation, let us consider a receiving
device with a uniform linear antenna array as shown in Fig. 2,
where the number of antennas is M , and the antenna spacing
is d. Assume that the number of signal propagation paths
is L and let us focus on the lth path shown in the figure.
Denote αl as the complex channel attention experienced by
the signal when impinging on the first antenna. Then, the
complex channel attention of the signal at the second antenna

d d

l

l
d


sin


l

d


sin
2


Uniform linear 
antenna array 1 2 3 M

Fig. 2: Illustration of MUSIC algorithm for AoA estimates at
a wireless device with uniform linear antenna array. Only one
signal path with AoA θl is shown in the figure.

is the same except for an additional phase shift caused by
the additional distance traveled by the signal. Mathematically,
the additional phase shift at the mth antenna can be written
as (m − 1) · d · sin(θl) · 2π

λ , where λ is the wavelength of
radio signal. Then, the complex channel attention at the mth
antenna can be expressed as (m−1)·d·2π

λ · sin(θl) · αl. Denote
h⃗l as the channel coefficient vector for the lth path. Then,
h⃗l = a⃗(θl) · αl, where

a⃗(θl) =
[
1 e−j

2πd sin(θl)

λ e−j
4πd sin(θl)

λ · · ·

e−j
2π(M−1)d sin(θl)

λ

]T
. (1)

At each antenna of the device, the observed CSI is the blend
of all paths as well as noise, i.e., H⃗ =

∑
l h⃗l =

∑
l a⃗(θl)αl.

Then, the AoA estimation problem can be formulated as
follows. Based on the N observations of CSI (i.e., H⃗n,
n = 1, 2, · · ·N , where H⃗n is the nth observation of channel
vector), how to estimate θl, l = 1, 2, · · · , L.
MUSIC Estimation: MUSIC is a subspace-based algorithm
that has been widely used for AoA estimates in wireless
localization. The general idea behind MUSIC method is to use
all the eigenvectors that span the noise subspace to improve the
performance of the Pisarenko estimator. It mainly comprises
the following steps.
Step 1: Calculate the correlation matrix of CSI observations:

R =
∑N

n=1 H⃗nH⃗
H
n , where (·)H is conjugate transpose

operator.
Step 2: Perform eigendecomposition of the correlation matrix:

[E S] = eig(R), where E is a matrix with its columns
being eigenvectors and S is the diagonal matrix with
sorted eigenvalues (in non-decreasing order).

Step 3: Divide E into two sub-matrices: E = [Es En], where
Es is the signal subspace and En is noise subspace.

Step 4: Evaluate the following function for all possible θ:
p(θ) = 1

a⃗(θ)HEnEH
na⃗(θ)

, where a⃗(θ) is the steering
direction defined in (1). The values of θ corresponding
to the peaks of p(θ) are the AoAs of incoming signals.

B. MUSIC for General Antenna Array (MUSIC-GAA)

The above MUSIC algorithm assumes that the antenna array
is equally spaced and linearly installed. However, in prac-
tice, most wireless APs are equipped with nonlinear antenna
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Fig. 3: Illustration of MUSIC algorithm for AoA estimation
at a wireless device with nonlinear (arbitrary) antenna config-
uration. Only one signal path with AoA θl is shown here.

array. For example, many WiFi routers are equipped with
four antennas which are installed in a rectangular shape to
save the space. In this section, AuthIoT extends the MUSIC
algorithm for a wireless device with general antenna array.
In addition, it borrows the idea from SpotFi [12] to improve
the AoA resolution by jointly estimating AoA and ToF of
incoming signals. The rationale behind joint estimation is that,
if two incoming signals are indistinguishable in the spatial
domain (due to the limited number of antennas), they may be
distinguishable in the time domain. Joint estimation makes it
possible to distinguish two incoming signals even if they have
very similar AoA.

Consider a receiving device with nonlinear antenna array
as shown in Fig. 3. For notional simplicity, we adopt polar
coordinate system for the antennas using the first antenna
position as the origin. Denote dm as the distance between
the 1st and mth antennas and ϕm as their angle, as illustrated
in the figure. Then, the coordinate of the mth antenna can be
written as (dm, ϕm). Particularly, the first antenna’s coordinate
is (0, 0).

Recall that αl is defined as the complex channel attention
of the lth path on the first antenna. The observed channel
coefficient (CSI) on the mth antenna over subcarrier k can be
modeled as:

hm,k =
∑
l

αl · ej
2πdm cos(ϕm−θl)

λ · e−j2πkfδτl + nm,k, (2)

where (dm, ϕm) is the polar coordinate of the mth antenna,
fδ is the subcarrier spacing of OFDM modulation, (αl, θl, τl)
is the complex attention, AoA, and delay of the lth path,
respectively. Lastly, nm,k is the CSI observation noise/error
at antenna m over subcarrier k.

Collectively, the observed CSI at all antennas and over all
subcarriers can be expressed as an M × K complex matrix,
where M is the number of antennas and K is the number of
subcarriers. Consider a four-antenna 802.11 WiFi router as an
example, which has 52 valid subcarriers in OFDM modulation.
The CSI matrix H ∈ C4×52 can be written as follows:
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
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H =

(3)

Solely using spatial degrees of freedom (DoF) provided by
antennas for AoA estimate may not be an ideal approach, as
it requires the number of antennas is larger than the number
of paths. This requirement may not be fulfilled in a real-
world indoor environment when the number of antennas on a
wireless AP is limited (e.g., four antennas on a WiFi router).
To improve the AoA resolution, AuthIoT expands the CSI
matrix H for MUSIC-based AoA estimate by following the
idea in [12]. Consider the CSI matrix in (3) as an example.
AuthIoT can expand the CSI matrix by bonding every three
columns as a new column as illustrated below:

He =



h11 h12 h13 h14 h15 h16 h17 . . .
h21 h22 h23 h24 h25 h26 h27 . . .
h31 h32 h33 h34 h35 h36 h37 . . .
h41 h42 h43 h44 h45 h46 h47 . . .
h12 h13 h14 h15 h16 h17 h18 . . .
h22 h23 h24 h25 h26 h27 h28 . . .
h32 h33 h34 h35 h36 h37 h38 . . .
h42 h43 h44 h45 h46 h47 h48 . . .
h13 h14 h15 h16 h17 h18 h19 . . .
h23 h24 h25 h26 h27 h28 h29 . . .
h33 h34 h35 h36 h37 h38 h39 . . .
h43 h44 h45 h46 h47 h48 h49 . . .



. (4)

The expanded CSI matrix is of 12 by 49 size, i.e., He ∈
C12×49; and its correlation matrix is of 12 by 12 size, i.e.,
HeH

H
e ∈ C12×12. This means that, when applying MUSIC to

AoA estimate, the expanded matrix renders a larger dimension
for noise subspace compared to the original CSI matrix (12−L
versus 4−L), thereby tending to offer a better AoA resolution.

In a general case, for CSI matrix H ∈ CM×K , a question
is how many columns should be bonded when expanding
this matrix for AoA estimate. For this question, we have the
following considerations. On one hand, the number of rows of
He should be maximized to improve the dimension of noise
subspace; on the other hand, the expanded CSI matrix He

should be a flat matrix for MUSIC calculation. Denote b as
the number of bonding columns in the CSI matrix. Then, these
two observations can be formulated as: max(Mb), subject to
Mg ≤ K −G+ 1 and G ∈ Z. Hence, we have G = ⌊K+1

M+1⌋.
Therefore, the dimension of the expanded CSI matrix is Mg
by K − G + 1, i.e., He ∈ C(Mg)×(K−G+1). The jth column
of He is [Hj ; Hj+1; · · · ; Hj+G−1], where Hj is the jth
column of H and [; · · · ; ] is vertical concatenation operator.

For the expanded CSI matrix He, we would like to explore
its basis for its columns. Based on (2), it can be verified that
each of its columns is a linear combination of the following
L basis vectors:
a⃗l = [a11 a21 · · · aM1︸ ︷︷ ︸

column 1

a12 a21 · · · aM2︸ ︷︷ ︸
column 2

· · ·

a1G a2G · · · aMG︸ ︷︷ ︸
column G

]T
(5)

for 1 ≤ l ≤ L, where amg = ej
2πdm cos(ϕm−θl)

λ · e−j2πgfδτl

with 1 ≤ m ≤ M and 1 ≤ g ≤ G.
Based on the expanded CSI matrix He and its column

basis, the two-dimensional MUSIC algorithm is summarized
as follows.
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TABLE II: Simulation parameters of MUSIC-GAA.

parameter value parameter value
carrier

frequency 5 GHz # of paths 5

bandwidth 40 MHz path 1:
(α1, θ1, τ1)

(1.00ej1.26, 15o, 5ns)

FFT size 64 path 2:
(α2, θ2, τ2)

(.40ej0.64,−71o, 21ns)

# of valid
subcarrier 52 path 3:

(α3, θ3, τ3)
(.20e−j1.86, 81o, 38ns)

# of
antennas 4 path 4:

(α4, θ4, τ4)
(.15ej1.64,−15o, 65ns)

antenna
configuration

Vertex of
6cm×6cm

square

path 5:
(α5, θ5, τ5)

(.10e−j1.51, 31o, 89ns)

Step 1: Measure the CSI matrix H at M antennas over K
subcarriers. Construct the expanded CSI matrix He by
letting its jth column be [Hj ; Hj+1; · · · ; Hj+G−1],
where Hj is the jth column of H, [; · · · ; ] is vertical
concatenation operator, and G = ⌊K+1

M+1⌋.
Step 2: Calculate the correlation matrix of CSI observations:

R = HeH
H
e , where (·)H is conjugate transpose

operator.
Step 3: Perform eigendecomposition of the correlation matrix:

[E S] = eig(R), where E is a matrix with its columns
being eigenvectors and S is the diagonal matrix with
sorted eigenvalues (in non-decreasing order).

Step 4: Divide E into two sub-matrices: E = [Es En], where
Es is the signal subspace and En is noise subspace.

Step 5: Evaluate the following function for all possible θ and
τ :

p(θ, τ) =
1

a⃗(θ, τ)HEnEH
n a⃗(θ, τ)

. (6)

Based on (5), the steering vector a⃗(θ, τ) is defined as
follows:

a⃗(θ, τ) =
[
a11 a21 · · · aM1︸ ︷︷ ︸

column 1

a12 a21 · · · aM2︸ ︷︷ ︸
column 2

(7)

· · · a1G a2G · · · aMG︸ ︷︷ ︸
column G

]T
,

where amg = ej
2πdm cos(ϕm−θ)

λ · e−j2πgfδτ for 1 ≤
m ≤ M and 1 ≤ g ≤ G. The values of (θ, τ)
corresponding to the peaks of p(θ, τ) are regarded as
a path with AoA of θ and delay of τ .

An Example: We use an example to illustrate the performance
of MUSIC-GAA. We consider a wireless AP and an IoT device
and attempt to estimate the AoA of signal paths at the wireless
AP. Table II lists the parameters that we use for simulation.
Particularly, the antennas on the AP are not linear installed;
instead, they are installed at the vertex of a 6cm×6cm square.
This antenna configuration is more realistic compared to a
uniform linear antenna array. In this case, the number of
paths is greater than the number of antennas. Fig. 4 shows
our simulation results when the CSI bears different levels of
error. Specifically, Fig. 4a depicts the result when the AP has
perfect CSI. In this figure, the small circles mark the ground
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(a) Perfect CSI (no error)
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(b) CSI estimation error: -40 dB
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(c) CSI estimation error: -30 dB
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(d) CSI estimation error: -20 dB

Fig. 4: Performance of MUSIC-GAA algorithm.

truth, while the black dots in the circles are the results of
MUSIC-GAA. The results reveal that MUSIC-GAA finds the
exact AoAs and delays of the five paths. Figs. 4b-d depict the
results when the CSI at the AP has -40 dB, -30 dB, and -20 dB
error. It can be seen that the heatmap becomes increasingly
blurry when the CSI bears larger error. This indicates that
accurate CSI is crucial. Fortunately, AuthIoT has accurate CSI
for MUSIC-GAA as the IoT device is physically close to the
AP with a LoS path.

Another observation from Figs. 4b–d is that the hot spots
appear to be horizontally stretched, rendering better accuracy
for AoA estimate than for delay estimate. This is because
AuthIoT only requires AoA of LoS signal path and does not
need the delay information. This phenomenon stems from the
CSI expansion operation (see (4) for example), where each
column of the expanded CSI matrix contains the CSI from all
antennas (but the CSI from a subset of subcarriers).

C. MUSIC-GAA for AuthIoT

Using MUSIC-GAA for AuthIoT to estimate the LoS AoA
faces the following two challenges. The first challenge is the
very small delay difference of multiple paths indoor environ-
ments, especially in a small room with many objects. For ex-
ample, if the distance difference of two paths is 1m, their delay
difference is 3.3ns. To achieve this delay resolution (3.3ns), it
requires 300MHz bandwidth. Such a large signal bandwidth
is not affordable for most wireless systems. 5GHz WiFi offers
40MHz bandwidth, which is insufficient to distinguish two
paths whose distance difference is less than 1m. The second
challenge is the CSI quantization error. For example, Atheros
WiFi NIC [31] offers 10-bit CSI quantization, rendering a
quantization error of 10 log10(1/2

10) = −30 dB; Intel 5300
WiFi NIC [32] offers 8-bit quantization for CSI, and its
quantization error is 10 log10(1/2

8) = −24 dB. As shown
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(a) Linear antenna array.
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(b) Nonlinear antenna array.

Fig. 5: Experimental results of MUSIC-GAA in two cases:
(a) Intel 5300 card with three linear equal-spaced antennas;
(b) USRP N310 with four antennas placed at the vertex of
6cm×6cm square.

in Fig. 4, the CSI error degrades the performance of MUSIC-
GAA.

AuthIoT addresses these two challenges as follows. First, it
asks users to keep the IoT device close to the AP (∼2m) so
that there is a strong LoS path between the two devices. It also
asks users to handwrite the passcode over the air at a large
scale (i.e., spanning a 75cm×75cm area for each passcode
character), so that the AoA change of writing a passcode
character is significant. These requirements will be specified
on the manual for end users. Second, it combines multiple
consecutive packets to improve the LoS AoA estimation
through k-means clustering [33]. Details will be given in §V-B.

We have evaluated the performance of MUSIC-GAA for
AuthIoT via experiments on two cases: i) the AP is an Intel
5300 card with three linear equal-spaced antennas; and ii) the
AP is a USRP N310 with four antennas placed at the vertex
of 6cm×6cm square. Both testbeds use WiFi signal for data
packet transmission, and the packet rate is 1000 per second. It
means that the AP can obtain 1000 CSI instances per second.
The distance between the AP and the IoT device is 2m, with
the presence of LoS path. We conducted the measurement
campaign in a two-story apartment with ordinary furniture.
Fig. 5 shows our experimental results. It can be seen that the
estimated LoS AoA increases/decreases as the ground-truth
LoS AoA increases/decreases. This observation is consistent
for both testbeds. This indicates that the LoS AoA tends to
manifest a unique pattern based on the movement of IoT
devices.

CSI 
acquisition

CSI 
acquisition

AmplitudeAmplitude

Data  
segmentation 

Data  
segmentation 

Data 
resample 

Data 
resample 

CSI Pre-processingCSI Pre-processing

Feature ExtractionFeature Extraction

MUSIC-GAAMUSIC-GAA

Bandpass 
filter

Bandpass 
filter

PCAPCA DWTDWT

LoS AoA clusteringLoS AoA clustering

Passcode character 
recognition result 

Passcode character 
recognition result 

CSI 
calibration

CSI 
calibration

Fully-connected 
neural network

Fully-connected 
neural network

CNNCNN

Conv layer &
Flatten layer
Conv layer &
Flatten layer

Fig. 6: Diagram of CSI-based passcode character recognition.

V. LEARNING-BASED PASSCODE RECOGNITION

A passcode is composed of several characters (English
alphabets, numbers, and some special characters). AuthIoT
recognizes each individual character based on its generated
CSI. Fig. 6 depicts the high-level system diagram of AuthIoT’s
passcode recognition. As shown in the diagram, AuthIoT
uses both LoS AoA and normalized amplitude of CSI as
the features for CNN-based character recognition. The reason
is that our experiments show, compared to solely using LoS
AoA as a feature, adding normalized CSI amplitude as input
can considerably improve the recognition accuracy (by 5% on
average in our observations). In what follows, we explain each
module in Fig. 6.

A. CSI Segmentation, Resampling, and Compensation

CSI Segmentation: When a user continuously writes passcode
characters in the air, the AP pings the IoT device at a certain
rate (e.g., 200 ping packets per second), so that it can fre-
quently estimate the CSI based on the ACK packets from the
IoT device. In practice, an end user may take different amounts
of time to write different characters, and different users may
take different amounts of time to write the same character.
Therefore, it is necessary to separate the collected CSI data
in the time domain for each written character. To facilitate
the CSI segmentation and improve its accuracy, AuthIoT asks
end users to pause (holding IoT device still) one second before
they begin to write a character. AuthIoT leverages the pause
between two neighboring characters for CSI segmentation. In
addition, AuthIoT asks end users to hold IoT device still for
two seconds before they start to write passcode and after they
complete passcode writing. Since a still IoT device generates
unique CSI features, AuthIoT leverages such features to de-
termine the time period of passcode writing.

Fig. 7 shows an example of AuthIoT’s CSI segmentation,
which comprises the following steps.

Step 1: Calculate the following metric: g(i) =
∠(hm,k(i)hn,k(i)

∗) · |hm,k(i)|, where hm,k(i)
is the channel coefficient from antenna m, subcarrier
k, and packet i. In our design, m and n are the
two antennas that offer strongest CSI, and k = 1.
Fig. 7a shows an instance of phase difference of two
channels, i.e., ∠(hm,k(i)hn,k(i)

∗). Fig. 7b shows an
instance of channel amplitude, i.e., |hm,k(i)|. Fig. 7c
shows an instance of g(i).
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Fig. 7: An example illustrating CSI segmentation.

Step 2: Calculate the window-slided variance as follows:
v(i) = 1

W

∑i+W−1
j=i |g(j) − ḡ|2, where ḡ =

1
W

∑i+W−1
j=i g(j). Fig. 7d shows an instance of v(i).

Step 3: Compare v(i) with a threshold Tv , where Tv = 0.03×
avg{v(i)}. The CSI segment corresponding to v(i) ≥
Tv is considered for an individual character. Fig. 7d
illustrates the windows corresponding to the segments
of CSI to be used for character recognition.

Step 4: Check the segmentation length for each letter. If the
time duration of a CSI segment is shorter than 1
second or longer than 4 seconds. AuthIoT discards
this CSI segment.

CSI Resampling: After CSI segmentation, different CSI
segments may have different numbers of CSI samples. The
purpose of resampling is to make sure that the number of CSI
samples in each CSI segment is identical. Doing so is likely
to ease the training and inference of CNN. AuthIoT resamples
each CSI segment using linear interpretation and/or decimation
on the real and imaginary parts of CSI samples.
CSI Compensation The CSI data need to be calibrated before
feeding to the MUSIC-GAA. Since the receiver and transmitter
are not synchronized, the CSI data from a WiFi receiver
may suffer from Sampling Time Offset (STO) and Sampling
Frequency Offset (SFO). To compensate STO and SFO, a
popular method is performing linear regression over multiple
consecutive CSI instances in both time and frequency domains
[12]. The linear fit of the unwrapped CSI phase for ith packet
can be expressed as

τs,i = argmin
α

M∑
m=1

N∑
n=1

(ϕi(m,n) + 2πfδ(n− 1)α+ β) (8)

The τs,i is the STO for ith packet. The fδ is the frequency
spacing between subcarriers. And the ϕi(m,n) is the wrapped
phase at mth antenna and nth subcarrier. After estimating
τs,i based on (8), the compensation is performed by adding
2πfδ(n − 1)τs,i to subcarrier n, n = 1, 2, · · · , N . The same
compensation applies to the CSI from each antenna.

B. Feature Extraction
1) LoS AoA Feature Extraction: AuthIoT uses MUSIC-

GAA to estimate the AoA-delay profile of the signal paths
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Fig. 8: Removal of abnormal LoS AoA samples through
filtering.

based on the CSI samples. One observation from our experi-
ments is that the AoA corresponding to the largest profile value
is always associated with the minimum delay. This makes
sense as there always exists a strong LoS path between the
IoT device and the AP. Based on this observation, AuthIoT
chooses the AoA corresponding to the largest value as LoS
AoA.

As shown in Fig. 8, the LoS AoA computed from CSI
is noisy due to the imperfection of hardware (e.g., 8-bit
quantization) and interference caused by environment changes
(e.g., body movement). Sometimes the LoS AoA jumps over
20 degrees for consecutive 10 packets. Obviously, such a
big jump is abnormal. To reduce the adverse effect of this
phenomenon, AuthIoT employs a clustering algorithm for the
elimination of unexpected AoA values. The rationale behind
this algorithm is that the AoA should not change over 20
degrees over 10 packets (10 ms). The clustering algorithm
works as follows.
Step 1: Slide a window of size 10 to move across the LoS

AoA sample sequence using the step size of 5. In
each window, the k-means clustering algorithm [33]
is employed to divide the 10 LoS AoA samples into
2 groups.

Step 2: Calculate the average values of the samples in the two
groups. If the difference is larger than 20 degree and
the number of samples in one group is less than 3, then
the group of smaller size is regarded as abnormal.

Step 3: Replace every sample in the abnormal group with the
average value of the larger group.

2) Amplitude Feature Extraction: In addition to LoS AoA,
AuthIoT uses CSI amplitude as another feature for CNN-
based recognition. The raw CSI amplitude is noisy. To enhance
the input data quality, AuthIoT employs a Butterworth band-
pass filter with frequency band 5Hz–20Hz to eliminate the
undesired frequency components and reduce the noise for the
CSI amplitude. This is because human’s writing movement is
in this frequency range [8]. Fig. 9 shows an example of the
filtering operation.

In indoor environments, wireless channels over neighbor-
ing subcarriers are very similar [7]. Hence, AuthIoT applies
Principle Component Analysis (PCA) to a group of adjacent
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Fig. 9: CSI amplitude before and after bandpass filtering.
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Fig. 10: Illustration of PCA operation on CSI amplitude.

subcarriers for data compression. Specifically, AuthIoT groups
every 6 subcarriers and applies PCA to each group. The first
component of PCA results is kept as the amplitude features,
while other components are discarded. Fig. 10 shows an
example of this operation. As it can be seen, the adjacent
6 subcarriers have similar channel amplitude, and the first
component of PCA results maintains the main shape of the
channels.

Writing a character over the air mainly comprises a series
of strokes. The action of each stroke is the key feature for the
CSI-based character recognition. To capture the action of each
stroke, AuthIoT performs Discrete Wavelet Transform (DWT)
on the CSI amplitude after PCA operation, as shown in Fig. 6.
Similar to WiReader [8], it performs 8-level discrete wavelet
transform on the CSI amplitude samples using symlet as the
basis function. Fig. 11 shows an example of DWT operation on
the CSI amplitude, where Fig. 11(a) shows the CSI amplitude
from PCA and Fig. 11(b) shows the DWT results. The DWT
results are then sent to the CNN for training and inference.

C. CNN Settings and Training

1) CNN Settings: Fig. 12 shows the structure of CNN,
which is composed of convolution layers, flatten layers and
fully-connected layers. Since the CSI amplitude matrix is of
high dimension (1000×40×3), AuthIoT employs convolution
operations to extract its high-level features and reduce its
dimension. Specifically, AuthIoT treats the amplitude DWT

100 200 300 400 500 600 700 800 900 1000
Packet

-0.05

0

0.05

0.1

C
S

I a
m

pi
tu

de
 (

P
C

A
)

200 400 600 800 1000
Packets

1
2
3
4
5
6
7
8

Le
ve

l

20

40

60

80

100

Fig. 11: Illustration of DWT operation on CSI amplitude.
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Fig. 12: CNN Structure.

spectrum (1000 × 40) as an image and each of the three
antennas as an image channel, similar to the process of RGB
channels in colorful image recognition. Two convolution layers
are used to compress the amplitude DWT spectrum. The first
convolution layer involves 32 kernels of 11× 5 size, and the
second layer has 16 kernels of 6 × 4 size. The step size of
both kernels is one. The purpose of the convolution layers is
to extract the features from amplitude DWT spectrum based
on its spatial relationship. It employs kernels moving across
the feature matrix and outputs the convolution result with
ReLU function. To further reduce the data dimension, AuthIoT
employs an averaging pooling layers with a size of 3 × 3
for each of the convolution layers. The pooling layers down-
sample the amplitude matrix, thereby reducing the compu-
tational complexity. The output of the second pooling layer
is flattened for vectorization. AuthIoT then concatenates the
resultant amplitude features with the AoA features, and feeds
the concatenated data vector to a fully-connected 128×64×32
neural network. SoftMax activation function is used for the
output layer to calculate the probability of each possible
passcode character.

2) CNN Training and Inference: As stated before, some
character pairs are not distinguishable in their handwriting
format, such as “z” and “Z”, “c” and “C”, “o” and “O”,
“s” and “S”, “v” and “V”, letter “I” and number “1”, etc.
Unfortunately, this challenge is hard to address from a tech-
nical perspective. Therefore, AuthIoT excludes the subset of
indistinguishable characters. Table III lists the 48 characters
that can be used for passcode in AuthIoT.
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TABLE III: Passwords Characters

Capital Letters A-Z
Lower-case letters a,b,d,e,f,g,h,q,r,t

Numbers 3-9
Special Characters #,$,%,+,=

To train the CNN model, CSI data are collected from
different locations and diverse users (details given in §VI).
The batch size in our training process is set to 100, and the
number of epochs is set to 25. A batch normalization layer
is added to the neural network after the activation function.
We observed that it could improve the convergence speed in
the training process, especially when the CSI is not stable due
to the change of environment. In addition, a dropout layer is
added after the second (64 neurons) and third (32 neurons)
layers to avoid overfitting [34]. It can make the network less
sensitive to specific neurons, and in turn make the network
better generation. The dropout rate is set to 0.2 for each layer
by randomly setting the output to zero. The CNN uses cross-
entropy as the loss function and employs Adam optimization
algorithm to update the weights.

After the CNN is trained, the system is then used for online
passcode character recognition in different environments. The
CNN model will eventually yield the possibility of the input
being each character. The character with the highest proba-
bility is regarded as the character being written by the end
user.

VI. EXPERIMENTAL EVALUATION

A. Implementation and Experimental Settings

Intel 5300 Testbed: This testbed is implemented using Dell
XPS 8940 Desktop with the Intel WiFi NIC 5300 and a Redmi
Note 9 Pro cellphone. The desktop serves as AP working in
hotspot mode, and the cellphone emulates an IoT device. The
desktop is installed with the Ubuntu 14.04 operating system
with 802.11 Linux CSI tool [32], which is used to acquire the
CSI from the WiFi card. The carrier frequency is 5GHz, and
the bandwidth is 40MHz. The packet rate is 600 packets per
second. Intel WiFi NIC 5300 is equipped with three antennas,
which are linearly placed with equal spacing. The antenna
spacing is half wavelength (3cm). Fig. 13(a) shows the linear
antenna setting of this testbed.
USRP Testbed: This testbed consists of a USRP N310 and a
USRP N210. USRP N310 has four antennas. It serves as the
AP. USRP N210 has one antenna. It emulates an IoT device
by sending data packets to USRP N310. The carrier frequency
is 2.4GHz, and the bandwidth is 20MHz. The packet rate is
1000 per second. This testbed has two antenna settings: linear
antenna array as shown in Fig. 13b and nonlinear antenna
array as shown in Fig. 13c. For the linear case, the antenna
spacing is 6.25cm. For the nonlinear case, the four antennas
are positioned at the vertex of a 6cm×6cm square.
Experimental Settings: Four scenarios are considered for
the evaluation of AuthIoT: lab, office, hallway, and home,
as shown in Fig. 14. The AP was placed on a table of
70cm height, and the IoT device was held by the participants.
The participants were asked to face the AP and keep an

(a) (b) (c)

Fig. 13: AP antenna settings: (a) Intel 5300 testbed with linear
antenna array; (b) USRP testbed with linear antenna array; (c)
USRP testbed with nonlinear antenna array.

(a) Lab scenario (b) Office scenario

(c) Hallway scenario (d) Home scenario

Fig. 14: Experimental settings.

approximate 2m distance. We placed the two testbeds in these
four scenarios and collected data to evaluate the performance.

The training data were collected solely from lab, while the
evaluation (inference) was performed in four scenarios (lab,
office, hallway, and home). The training data were collected
from five different participants, while the evaluation was
conducted over nine participants (i.e., those five participants
for training plus four new participants). In the training phase,
each participant was asked to write the 48 characters in
Table III, and each character was repeated 12 times. In total,
576 data samples were collected from each participant in the
lab scenario for the training purpose.

In the test (inference) phase, each of the nine participants
was asked to hold the IoT device and write 500 characters at
his/her will at each scenario. The collected data samples were
fed into the system for evaluation purpose.

B. Experimental Results from Intel 5300 Testbed

Intel 5300 is a commercial off-the-shelf WiFi NIC that is
widely used for computers and routers. Evaluating AuthIoT
on this testbed reveals its performance in real-world WiFi
networks.
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Overall Accuracy: Fig. 15 presents the overall recognition
accuracy on this testbed. Literally, AuthIoT reaches 88%
recognition accuracy with a standard deviation of 0.018 over
the nine participants in the lab scenario; it reaches 85%
recognition accuracy with a standard deviation of 0.023 in the
hallway scenario; it reaches 84% recognition accuracy with
a standard deviation of 0.014 in the office scenario; and it
reaches 83% recognition accuracy with a standard deviation
of 0.019 in the home scenario. It can be seen that AuthIoT
performs best in the lab scenario. This is not surprising,
because AuthIoT’s CNN model was trained by the dataset
collected from the lab scenario.

Fig. 18 shows the confusion matrix of passcode character
recognition. It can be seen that the accuracy is above 85%
for most characters. The majority of errors occur due to the
ambiguity of the characters sharing similar hand gestures. For
example, AuthIoT is more likely to be confused by letters ‘C’
and ‘O’; it is also hard to distinguish letters ‘M’ and ‘N’.
Accuracy of Individual Category: To obtain more details,
we examine the performance of AuthIoT over three subsets
of passcode characters: 26 upper-case letters, 10 lower-case
letters, and 10 numbers. Fig. 16 shows our test results. It can be
seen that the recognition accuracy in all scenarios are beyond
85% for the three subsets of characters.

C. Experimental Results from USRP Testbed

We further evaluate the performance of AuthIoT on the
USRP testbed with linear and nonlinear antenna arrays.
Linear Antenna Array: Fig. 17 presents the recognition
accuracy on the USRP testbed when it is equipped with
four linearly equal-spaced antennas. It can be seen that the
recognition accuracy in the lab scenario is better than other
scenarios. This is because AuthIoT’s CNN model was trained
by the dataset collected from the lab scenario. It also can
be seen that the recognition accuracy on the USRP testbed
is slightly higher than that on Intel 5300 testbed. This can
be attributed to the fact that the USRP testbed has one more
antenna than the Intel 5300 testbed.

We examine the recognition accuracy for each individual
participants. Fig. 19 shows our experimental results. The
results show that the recognition accuracy is within the range
of 81% to 88% for the nine participants. This indicates that
AuthIoT is robust against the variation of end users.
Nonlinear Antenna Array: Fig. 17 also presents the recog-
nition accuracy when the USRP testbed is equipped with four
nonlinear antennas. It can been seen that the two cases (linear
antenna array and nonlinear antenna array) have very similar
recognition accuracy, with a difference less than 2%. The
performance similarity can be traced down to the accuracy of
LoS AoA estimation as shown in Fig. 5. Since the LoS AoA
estimation in the two antenna settings has similar accuracy,
it is not surprising that the recognition in the two antenna
settings has similar accuracy.
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D. Robustness of AuthIoT

To evaluate the robustness of AuthIoT, we examine its
performance when the user is located at different distances
and from different directions.
Different Distances: We change the distance between AP
and IoT device to examine the performance of AuthIoT. We
consider four distances: 2.0m, 2.5m, 3.0m, and 3.5m. We
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TABLE IV: Recognition accuracy of AuthIoT when the distance between AP and IoT device changes.

Lab Office Hallway Home
distance Linear Non-linear Linear Non-linear Linear Non-linear Linear Non-linear

2.0m 89% 89% 86% 84% 85% 84% 84% 82%
2.5m 87% 86% 85% 84% 84% 84% 83% 82%
3.0m 85% 85% 84% 83% 84% 83% 82% 81%
3.5m 85% 84% 83% 82% 83% 83% 82% 81%

conduct experiments in four scenarios: lab, office, hallway,
and home. Table IV presents our experimental results. It can
be seen that, in each scenario, AuthIoT has a consistent
performance when the distance between AP and IoT device
varies from 2.0m to 3.5m. For all cases, the recognition
accuracy of AuthIoT is within the range from 81% to 89%,
regardless of the experimental scenario, the antenna pattern,
and the distance between AP and IoT device. This indicates
the robustness of AuthIoT.
Different Directions: To evaluate its robustness to user’s
facing direction, we let the user keeps the same distance to
the AP but moves around with different facing angles ranging
from 10 degree to 40 degree. As we can observe from Fig. 20,
the recognition accuracy of AuthIoT slightly degrades when
the angle between the user and AP increases from 0 to 40
degree. This is because the training data are collected at the 0
degree location. However, it can be observed that the accuracy
for both linear and nonlinear settings are always above 83%.
Discussions: The overall recognition accuracy of 83% is not
perfect but within an acceptable range. In practice, there
are some ways to further improve AuthIoT’s Quality of
Experience (QoE) for end users. For example, an end user
can consider using an all-numbers passcode. AuthIoT offers
a superior performance when the passcode is all numbers.
Meanwhile, an all-number passcode is sufficiently strong in
practice. Moreover, a prompt-notification mechanism can be
added into AuthIoT to improve the QoE of end users. In
essence, AuthIoT is a learning-based classification algorithm.
The output of AuthIoT includes not only the corresponding
character but also its recognition probability (i.e., the recog-
nition confidence). When AuthIoT has a low confidence for a
character recognition, it immediately asks end user to rewrite
the previous character. Doing so will offer a better QoE for
end users.

VII. CONCLUSION

In this paper, we studied the communication authenti-
cation problem for wireless IoT devices without an input
interface. We presented AuthIoT to authenticate such IoT
devices in WiFi networks by leveraging the unique CSI
pattern generated by the movement of IoT devices. AuthIoT
exploits environment-independent CSI features for learning-
based character recognition, and therefore is transferable for
cross-environment applications. AuthIoT also extends its ap-
plications for the case where a WiFi AP is equipped with a
nonlinear-installed antenna array by generalizing existing AoA
estimation methods. We have built a prototype of AuthIoT
and evaluated its performance on the testbeds with linear and
nonlinear antenna arrays. Our experimental results confirm that

AuthIoT is transferable for cross-environment applications,
and show that AuthIoT achieves at least 83% recognition
accuracy.
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